

Problem of the Week #10 (Spring 2024)

Evaluate (by hand) the definite integral $\int_0^1 x^m (1-x)^n dx$.

Solution:

Solution. Choose u_1 through u_m , v_1 through v_n , and x independently at random with uniform distribution on the interval [0, 1].

Given any $x \in [0,1]$, the probability that $u_i < x$ is x and the probability that $v_j > x$ is (1-x), so the joint probability that each u_i is less than x while each v_j is greater than x is $\int_0^1 x^m (1-x)^n dx$.

On the other hand, these m+n+1 variables can be ordered in (m+n+1)! different permutations, all equally likely. Of these permutations, there are $\underline{m! n!}$ that have all u_i 's less than x

and all v_j 's greater than x, so $\int_0^1 x^m (1-x)^n dx = \boxed{\frac{m! n!}{(m+n+1)!}}$.

Source: Richard Stanley, *Conversational Problem Solving*, American Mathematical Society (2010), 68–69.