Problem of the Week \#10

 (Spring 2024)Evaluate (by hand) the definite integral $\int_{0}^{1} x^{m}(1-x)^{n} d x$.

Solution:

Solution. Choose u_{1} through u_{m}, v_{1} through v_{n}, and x independently at random with uniform distribution on the interval $[0,1]$.

Given any $x \in[0,1]$, the probability that $u_{i}<x$ is x and the probability that $v_{j}>x$ is ($1-x$), so the joint probability that each u_{i} is less than x while each v_{j} is greater than x is $\int_{0}^{1} x^{m}(1-x)^{n} d x$.

On the other hand, these $m+n+1$ variables can be ordered in $(m+n+1)$! different permutations, all equally likely. Of these permutations, there are m ! n ! that have all u_{i} 's less than x and all v_{j} 's greater than x, so $\int_{0}^{1} x^{m}(1-x)^{n} d x=\frac{m!n!}{(m+n+1)!}$.

Source: Richard Stanley, Conversational Problem Solving, American Mathematical Society (2010), 68-69.

