Problem of the Week \#7
(Spring 2024)

Which prime numbers $p$ have the property that $p^{2}-24 p+122$ is also prime?

## Solution:

The only such primes are 3,7 , and 17 .
Proof.
Let $f(p)=p^{2}-24 p+122$. Notice that $f(3)=59$, which is prime, so $p=3$ is a solution.
Suppose from now on that $p \neq 3$. By Fermat's little theorem, we know (since 3 is prime and $p$ is not a multiple of 3 ) that $p^{2}-1=3 k$ for some integer $k$. [You can also check this yourself: the key idea is that $(3 n \pm 1)^{2}-1=3\left(3 n^{2} \pm 2 n\right)$.]
Now we know that

$$
f(p)=\left(p^{2}-1\right)-24 p+123=3(k-8 p+41)
$$

so $f(p)$ is a multiple of 3 . Therefore, $f(p)$ is prime if and only if

$$
\begin{aligned}
f(p) & =3 \\
p^{2}-24 p+122 & =3 \\
p^{2}-24 p+119 & =0 \\
(p-7)(p-17) & =0 \\
p=7 & \text { or } p=17 .
\end{aligned}
$$

Source: Suggested by: Lokman Gökçe, "Quickies 1116," Mathematics Magazine 94:5 (December 2021), 391, 398.

