Problem of the Week \#6
(Spring 2024)

I arrived at the Magic: the Gathering tournament with my deck of 24 land cards and 36 other cards. On average, once I shuffle the deck (but before I start to draw), how many places will there be in the deck where a land card touches a non-land card (i.e., comes immediately before or after it in the deck)?

Solution:

Proof. Define the random variable X_{i} so that $X_{i}=1$ if exactly one of the cards i and $i+1$ is a land, and $X_{i}=0$ otherwise. The expected value of X_{i} is the probability that exactly one of i and $i+1$ are lands, which is

$$
E\left(X_{i}\right)=\frac{24}{60} \cdot \frac{36}{59}+\frac{36}{60} \cdot \frac{24}{59}=\frac{2 \cdot 36 \cdot 24}{60 \cdot 59}=\frac{6 \cdot 24}{5 \cdot 59} .
$$

By the linearity of expectation, the expected number of places where land cards touch nonland cards is

$$
E\left(\sum_{i=1}^{59} X_{i}\right)=\sum_{i=1}^{59} E\left(X_{i}\right)=59 \cdot \frac{6 \cdot 24}{5 \cdot 59}=\frac{144}{5}=28.8 .
$$

Source: Frederick Mosteller, "The Theater Row," Fifty Challenging Problems in Probability With Solutions, Dover Publications (1965), 29-30.

