Problem of the Week \#5

(Spring 2024)

When it gets switched on, a wind-up toy moves 3 cm in a straight line, then stops and makes a 60° left turn. Then it moves 2 cm in the new direction, after which it stops and makes another 60° left turn. It continues in the same way: each time it moves, it goes two-thirds as far as the time before, and in between movements it always turns 60° to the left. If this continues forever, the toy will approach a certain point. How far away is that point, in a straight line, from the toy's starting point?

Solution:

The distance is $\frac{9 \sqrt{7}}{7} \mathrm{~cm}$.
Proof. Suppose that the toy starts out at 0 in the complex plane, moving in the positive real direction. The displacement of the toy's first movement is 3 ; every future displacement is $\frac{2}{3} e^{\pi i / 3}=\frac{1+i \sqrt{3}}{3}$ times the one before. The limit point at the end of the path is the sum of a geometric series:

$$
\sum_{k=0}^{\infty} 3\left(\frac{1+i \sqrt{3}}{3}\right)^{k}=\frac{3}{1-\frac{1+i \sqrt{3}}{3}}=\frac{9}{2-i \sqrt{3}} .
$$

The distance of this point from the origin is

$$
\left.\left|\frac{9}{2-i \sqrt{3}}\right|=\frac{|9|}{|2-i \sqrt{3}|}=\frac{9}{\sqrt{2^{2}+(-\sqrt{3})^{2}}}=\boxed{\frac{9}{\sqrt{7}}}=\frac{9 \sqrt{7}}{7}\right] \approx 3.4 \mathrm{~cm} .
$$

Remark. In standard form, the limiting position of the toy is

$$
\frac{9}{2-i \sqrt{3}} \cdot \frac{2+i \sqrt{3}}{2+i \sqrt{3}}=\frac{18+9 i \sqrt{3}}{7} \approx 2.57+2.23 i .
$$

Source: Problem 8, 2020 AIME I (American Invitational Mathematics Examination).

