UNIVERSITY OF WISCONSIN

PLATTEVILLE

DEPARTMENT OF MATHEMATICS

PROBLEM OF THE WEEK #9
(Spring 2023)

UWPACS, the UW-Platteville Armageddon Chess Squad, needs to get ready for the new
season by ranking its eight players. They don’t have much time before they have to submit
their rosters, with their players in order from strongest to weakest, and unfortunately they
only have one chess clock, so they can’t play more than one game at a time. The good news
is that Armageddon chess can’t end in a draw*, and the games don’t take nearly as long as
ordinary competitive chess: they’re always over in ten minutes or less.

Because they're in a hurry, the coaches have decided to assume that game results really tell
you how good the players are — there are never any upsets — and that therefore, if player
A beats player B and B beats C, we know for sure that A is better than both B and C' (and
B is better than ().

1. If the team has a three-hour meeting in which to play games, and the coaches pick the
players for each game as they go along, can they get enough information to determine
a ranking of all eight players?

2. What if the team only has two and a half hours to get the ranking done?
[You should submit your solution even if you only answer one of these two questions!]

Solution:

1. If we have two sets A and B of n players each, and we already know how the players
in each of those sets should be ranked against each other, then we can rank the whole
set Au B of 2n players in the following way. First, have the best player in A play the
best player in B. The winner is the best player in Au B: remove them from the set,
and repeat the process. At worst, this can take 2n — 1 games, removing one of the 2n
players with each game. (We might finish in as few as n games if the players in A are
all better than the players in B or vice versa.)

UWPACS has 8 players. With a single game, we can rank one pair of players. It can
take up to 3 games to turn two ranked pairs into a ranked set of 4, and up to 7 games
to turn two ranked foursomes into a ranked set of 8. So we can rank the whole squad
using 4-1+2-3+1-7 =17 games, which they can finish in two hours and fifty minutes.

2. In 150 minutes, UWPACS can only count on holding 15 ten-minute games, with 2! =
32768 possible sequences of results. That’s not enough different outcomes to tell apart
the 8! = 40320 possible rankings.

Remark. 1 den’t know! whether or not they could rank their 8-player squad within 16 games.

Source: Dennis Shasha, The Puzzling Adventures of Dr. Ecco. New York: W.H. Freeman
and Company (1988), 23-24, 141-143.

*Stalemate is treated as a win for Black.
TSee next page!




UPDATE (4/6/2023): I have learned that the 8-player squad can always be ranked within
16 games, using a sorting algorithm called “merge-insertion sort.”¥ Here’s how it goes with
eight players:

Step 1 (7 games): Run a standard single-elimination tournament. The winner x; is best.

Step 2 (1 game): The player who lost the championship game plays the semifinalist that they
haven’t played already. The winner z, has beaten two semifinalists and lost to x;.

Step 3 (0—1 game): Those two semifinalists play, if they haven’t already: the winner x3 is
better than the loser z4.

At this point, let y; be the opponent of x; in the first round of the tournament. If we write
> for “is better than,” we know x1 > x9 > 13 > 14 > y4, as well as 1 > y1, T2 > Y9, and x3 > ys3.

Step 4 (2 games): Rank yo among {x3, 24,94} by binary search. First y, should play z4. If
Yo > x4, then yo plays xs3, but if x4 > yo then yo plays y4.

Step 5 (2 games): Rank y3 among {z4,y2,ys4} by binary search. First y3 should play the
middle-ranked member of {x4,y2,y4}. If they win, they play the top-ranked member next,
and if they lose they face the bottom-ranked member.

Step 6 (3 games): Rank y; among {z, 3,24, Y2, y3,ys} by binary search. That is, match y;
against a middle-ranked member of that set to eliminate half of the possible rankings for y;.
Repeat twice to find the right ranking for y;.

https://en.wikipedia.org/wiki/Merge-insertion_sort



