Problem of the Week \#6
(Spring 2023)

For each positive integer n, let D_{n} be the greatest odd divisor of n. (For example, $D_{168}=21$.) Find $D_{1}+D_{2}+D_{3}+\cdots+D_{2048}$.

Solution:

The sum equals 1,398,102.
Proof. Let $S_{n}=\sum_{k=1}^{2^{n}} D_{k}=D_{1}+\cdots+D_{2^{n}}$; our goal is to find S_{11}, since $2^{11}=2048$. Notice that $S_{0}=D_{1}=1$.
If k is odd, then $D_{k}=k$; but for any even number $2 k$, we have $D_{2 k}=D_{k}$. Therefore,

$$
\begin{aligned}
S_{n+1} & =\sum_{k=1}^{2^{n+1}} D_{k} \\
& =\sum_{k=1}^{2^{n}} D_{2 k-1}+\sum_{k=1}^{2^{n}} D_{2 k} \\
& =\sum_{k=1}^{2^{n}}(2 k-1)+\sum_{k=1}^{2^{n}} D_{k} \\
& =\sum_{k=1}^{2^{n}}(2 k-1)+S_{n} .
\end{aligned}
$$

It is well known* that the odd integers from 1 through $2 m-1$ add up to m^{2}, so

$$
S_{n+1}=\left(2^{n}\right)^{2}+S_{n}=4^{n}+S_{n} .
$$

Therefore,

$$
\begin{aligned}
S_{11} & =\left(S_{11}-S_{10}\right)+\left(S_{10}-S_{9}\right)+\cdots+\left(S_{2}-S_{1}\right)+\left(S_{1}-S_{0}\right)+S_{0} \\
& =4^{10}+4^{9}+\cdots+4^{1}+4^{0}+S_{0} \\
& =\frac{4^{11}-1}{4-1}+1 \\
& =\frac{4^{11}+2}{3} \\
& =1,398,102 .
\end{aligned}
$$

Source: Titu Andreescu and Jonathan Kane. Purple Comet! Math Meet: The First Ten Years. XYZ Press (2013), 130-131.

