PROBLEM OF THE WEEK \#5

(Spring 2023)

Find every positive integer that equals four times the sum of its digits.

Solution:

The only such positive integers are $\{12,24,36,48\}$.
Proof. Let x be a positive integer. If x has just one digit, then x equals the sum of its digits. If x has exactly two digits, we can write $x=10 d_{1}+d_{0}$ with $0 \leq d_{i} \leq 9$. In this case, if x equals four times the sum of its digits, then

$$
10 d_{1}+d_{0}=4\left(d_{1}+d_{0}\right) \quad \Rightarrow \quad 6 d_{1}=3 d_{0} \quad \Rightarrow \quad 2 d_{1}=d_{0} .
$$

We can't have $x=0$, so $0<d_{0}<10$, and therefore $0<d_{1}<5$. The four remaining possibilities are $x \in\{12,24,36,48\}$, and each of these does equal four times the sum of its digits.
Now, for any positive integer x, let $f(x)$ denote x divided by the sum of the digits of x. If x is an M-digit number, then the decimal form of x is $x=\sum_{k=0}^{M-1} d_{k} \cdot 10^{k}$, and

$$
f(x)=\frac{\sum_{k=0}^{M-1} d_{k} \cdot 10^{k}}{\sum_{k=0}^{M-1} d_{k}} .
$$

We can read this as saying that x is the sum of a certain list of powers of ten, and $f(x)$ is the average (mean) value of that list. Since x has M digits, the list must contain at least one copy of 10^{M-1}.
Now assume $M \geq 3$. We know $f\left(10^{M-1}\right)=10^{M-1}$. We can decrease the value of f by adding copies of $1=10^{0}$ to the list until we reach

$$
f\left(10^{M-1}+9\right)=\frac{10^{M-1}+9}{1+9}=10^{M-2}+\frac{9}{10}>10 .
$$

At this point we can't increase d_{0} any further. Increasing other digits of x adds numbers to the list that are at least 10 , and that can't decrease the mean value $f(x)$ below 10 . This proves that if x has three or more digits, then $f(x)>10$, so $f(x) \neq 4$.

