(Spring 2023)
The rectangle shown below has been subdivided into nine rectangles of equal area. (Rectangles of the same color are congruent.) Find the value of x / y, where x is the height of the silver rectangles and y is the height of the orange rectangles.

Solution:

Let w and z be the heights of the maroon and blue rectangles respectively, and let A denote the common area of the nine rectangles. The largest and smallest rectangles have areas:

$$
\begin{array}{rlrl}
(y+z)\left(\frac{A}{y}+\frac{A}{z}\right) & =9 A & (x-w)\left(\frac{A}{w}-\frac{A}{x}\right) & =A \\
A\left(1+\frac{y}{z}+\frac{z}{y}+1\right) & =9 A & A\left(\frac{x}{w}-1-1+\frac{w}{x}\right) & =A \\
\frac{y}{z}+\frac{z}{y} & =7 & \frac{x}{w}+\frac{w}{x} & =3 \\
y^{2}+z^{2} & =7 y z & x^{2}+w^{2} & =3 x w \\
(y-z)^{2} & =5 y z & (x+w)^{2} & =5 x w
\end{array}
$$

From the figure, $y-z=x+w$, so $5 y z=5 x w$, or $\frac{y}{x}=\frac{w}{z}$. Now let $r=\frac{y}{x}=\frac{w}{z}$. Notice:

$$
\begin{aligned}
\frac{1}{x}+\frac{1}{y} & =\frac{1}{z}-\frac{1}{w} \\
\frac{y w}{x}+w & =\frac{y w}{z}-y \\
(r+1) w & =(r-1) y .
\end{aligned}
$$

So we have $y=r x, w=\frac{r-1}{r+1} \cdot y=\frac{r(r-1)}{r+1} \cdot x$, and $z=\frac{w}{r}=\frac{r-1}{r+1} \cdot x$. Using these substitutions,

$$
\begin{aligned}
& x^{2}+w^{2}=3 x w \\
& x^{2}+\frac{r^{4}-2 r^{3}+r^{2}}{r^{2}+2 r+1} \cdot x^{2}=3 \frac{r^{2}-r}{r+1} \cdot x^{2} \\
& r^{4}-2 r^{3}+2 r^{2}+2 r+1=3 r^{3}-3 r \\
&\left(r^{2}-4 r-1\right)\left(r^{2}-r-1\right)=r^{4}-5 r^{3}+2 r^{2}+5 r+1=0 \\
& r=2 \pm \sqrt{5} \text { or } r=\frac{1 \pm \sqrt{5}}{2} .
\end{aligned}
$$

But we need $r=\frac{y}{x}>0$, which rules out two of these values. Also, $\frac{A}{w}>\frac{A}{x}$, since the white rectangle has positive width. This means $x>w$, and therefore $r(r-1)<r+1$, or $r^{2}-2 r-1<0$.
Hence $r \neq 2+\sqrt{5}$, so $r=\frac{1+\sqrt{5}}{2}$, and $\frac{x}{y}=\frac{1}{r}=\frac{\sqrt{5}-1}{2}$.
Source: Arsalan Wares, "Nine Rectangles," Math Horizons 30:2 (November 2022), 30.

