Problem of the Week \#2

(Spring 2023)

Suppose $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ is a sequence of positive numbers with the property that for all $n \geq 2$, $(n+1)^{a_{n}}=n^{a_{n-1}}$.
For which values of n is $a_{n}<\frac{a_{1}}{2023}$?

Solution:

Let's rewrite the given identity:

$$
\begin{align*}
(n+1)^{a_{n}} & =n^{a_{n-1}} \\
a_{n} & =\log _{n+1}\left(n^{a_{n-1}}\right)=a_{n-1} \log _{n+1} n . \tag{1}
\end{align*}
$$

We claim that $a_{n}=a_{1} \log _{n+1} 2$ for all $n \geq 2$.
Proof of claim.
The proof is by induction. Taking $n=2$ in (1), we get $a_{2}=a_{1} \log _{3} 2$ as desired.
Assume for induction that $a_{k}=a_{1} \log _{k+1} 2$. Then, taking $n=k+1$ in (1):
$a_{k+1}=a_{k} \log _{k+2}(k+1)=\left(a_{1} \log _{k+1} 2\right) \log _{k+2}(k+1)=a_{1} \frac{\ln 2}{\ln (k+1)} \cdot \frac{\ln (k+1)}{\ln (k+2)}=a_{1} \log _{k+2} 2$,
completing the induction.
Now that we have a formula for a_{n} :

$$
\begin{array}{rlrl}
a_{n} & <\frac{a_{1}}{2023} \\
& \Longleftrightarrow \quad \not n_{1} \log _{n+1} 2 & <\frac{x_{r^{1}}}{2023} \quad\left(\text { since } a_{1}>0\right) \\
& \Longleftrightarrow \quad 2 & <(n+1)^{1 / 2023} \\
& \Longleftrightarrow \quad 2^{2023} & <n+1 \\
& \Longleftrightarrow \quad 2^{2023} & \leq n .
\end{array}
$$

Source: Dan Swenson, Black Hills State University.

