Problem of the Week \#1
(Spring 2023)

Let S be the real number written in decimal notation as $0.02040608101214 \ldots$. Specifically, $S=\frac{2}{10^{2}}+\frac{4}{10^{4}}+\frac{6}{10^{6}}+\ldots$, with terms overlapping in the decimal form once the numerators have three or more digits.
Write S as a fraction in lowest terms.

Solution:

$S=\frac{200}{9801}$.
Proof.

$$
\begin{aligned}
100 S & =2.0406081012 \ldots & 9900 S & =202.0202020202 \ldots \\
S & =0.0204060810 \ldots & 99 S & =2.0202020202 \ldots \\
\hline 99 S & =2.0202020202 \ldots & 9801 S & =200
\end{aligned}
$$

So $S=\frac{200}{9801}$.
Alternate proof. We have $S=f(1 / 10)$, where

$$
\begin{aligned}
f(x) & =2 x^{2}+4 x^{4}+6 x^{6}+\ldots \\
\frac{f(x)}{x} & =2 x+4 x^{3}+6 x^{5}+\ldots \\
\frac{f(x)}{x} & =\frac{d}{d x}\left[x^{2}+x^{4}+x^{6}+\ldots\right] \\
\frac{f(x)}{x} & \left.=\frac{d}{d x}\left[\frac{x^{2}}{1-x^{2}}\right] \quad \quad \quad \text { geometric series sum for }|x|<1\right) \\
\frac{f(x)}{x} & =\frac{\left(1-x^{2}\right)(2 x)-\left(x^{2}\right)(-2 x)}{\left(1-x^{2}\right)^{2}} \\
\frac{f(x)}{x} & =\frac{2 x}{\left(1-x^{2}\right)^{2}} \\
f(x) & =\frac{2 x^{2}}{\left(1-x^{2}\right)^{2}}
\end{aligned}
$$

Since $\left|\frac{1}{10}\right|<1$, we have $S=f\left(\frac{1}{10}\right)=\frac{2 / 100}{(99 / 100)^{2}}=\frac{2}{100} \cdot \frac{100^{2}}{99^{2}}=\frac{200}{9801}$.

