Problem of the Week \#9

(Spring 2022)

Let $\triangle A B C$ be an equilateral triangle with sides of length L. A "downward triangle" is an equilateral triangle with sides of length 1 , having edges parallel to the edges of $\triangle A B C$, but with the opposite orientation, as shown in the figure.
Prove: If n downward triangles can fit inside $\triangle A B C$, without overlapping except along edges, then $n \leq \frac{2}{3} L^{2}$.

Solution:

Proof. Thinking of edge $\overline{A B}$ as the base of $\triangle A B C$, we refer to the edge parallel to $\overline{A B}$ in each downward triangle as a "top edge."
On each downward triangle T, construct a "top hexagon" - a regular hexagon with opposite vertices at the endpoints of the top edge of T. Two downward triangles are disjoint if and only if their top hexagons are disjoint. If T lies inside $\triangle A B C$, then so does its top hexagon. Each downward triangle can be decomposed into 4 equilateral triangles with sides of length $\frac{1}{2}$, and each top hexagon can be decomposed into 6 such triangles. So if each downward triangle has area A, then each top hexagon has area $\frac{3}{2} A$, while by similarity, $\triangle A B C$ has area $A L^{2}$.
Therefore, if n disjoint downward triangles fit inside $\triangle A B C$ without overlapping, then $n \cdot \frac{3}{2} A \leq$ $A L^{2}$, so $n \leq \frac{2}{3} L^{2}$.

Source: Béla Bajnow and Evan Chen. "Report on the 12th Annual USA Junior Mathematical Olympiad." College Mathematics Journal 53:1 (January 2022), 13-20.

