Problem of the Week \#7

(Spring 2022)

A positive integer n is a semi-1 number if exactly half of the integers from 1 through n contain the digit 1 . For example, 16 is semi-1, because exactly 8 of the integers between 1 and 16 contain the digit 1 :

$$
\{1,10,11,12,13,14,15,16\} .
$$

Your challenge: submit the largest semi-1 number you can find! How do you know that your number is semi-1?

Bonus: Are there infinitely many semi-1 numbers, or only finitely many?

Solution:

A bit of computer programming suggests that there are exactly 16 semi-1 numbers:

$$
\{2,16,24,160,270,272,1456,3398,3418,3420,3422,13120,44686,118096,674934,1062880\} .
$$

For the bonus, let's prove that there are only finitely many semi- 1 numbers.
Proof. For any positive integer n, let $c(n)$ be the number of integers from 1 through n that contain the digit 1 . Then $d(n)$ integers from 1 through n do not contain the digit 1 , where $c(n)+d(n)=n$. Let $f(n)=c(n)-d(n)$; thus between 1 and n, there are $f(n)$ more integers that do contain the digit 1 than don't. By definition, n is semi- 1 if and only if $f(n)=0$.
For any t we have $f(t+1)=f(t) \pm 1$, and by induction, $f(t)-m \leq f(t+m) \leq f(t)+m$ for any t and m.
Also, for any positive integer k, we have $d\left(10^{k}\right)=9^{k}-1$, so $c\left(10^{k}\right)=10^{k}-9^{k}+1$ and $f\left(10^{k}\right)=10^{k}-2 \cdot 9^{k}+2$. Specifically, $f\left(10^{7}\right)=434,064>0$.
[Note in passing that $f\left(10^{6}\right)=10^{6}-2 \cdot 9^{6}+2=-62880$, which is why $f(1062880)=0$.]
Next, note that from $10^{k}+1$ through $2 \cdot 10^{k}$ there are $10^{k}-1$ integers that contain the digit 1 , and one integer that does not, so $f\left(2 \cdot 10^{k}\right)=f\left(10^{k}\right)+10^{k}-2$. So if $k>1$, then $f\left(2 \cdot 10^{k}\right)>f\left(10^{k}\right)$.
On the other hand, suppose that a is an integer and $2 \leq a \leq 9$. If $a \cdot 10^{k}<x \leq(a+1) \cdot 10^{k}$, then $0<x-a \cdot 10^{k} \leq 10^{k}$, and x and $x-a \cdot 10^{k}$ contain the digit 1 the same number of times. Therefore, $f\left((a+1) 10^{k}\right)=f\left(a \cdot 10^{k}\right)+f\left(10^{k}\right)$. By induction, this shows that if $k \geq 7$, then

$$
0<f\left(10^{k}\right)<f\left(2 \cdot 10^{k}\right)<f\left(3 \cdot 10^{k}\right)<\cdots<f\left(9 \cdot 10^{k}\right)<f\left(10^{k+1}\right) .
$$

Specifically, if $k>7$, then $f\left(10^{k}\right)>f\left(10^{7}\right)$.
Finally, let $x \geq 10^{7}$. Let a be the most significant digit of x, so that $x=a \cdot 10^{k}+m$ for some integers k and m with $k \geq 7$ and $0 \leq m<10^{k}$. If $a=1$, then $f(x)=f\left(10^{k}+m\right)=f\left(10^{k}\right)+m>$ $m \geq 0$. Otherwise,
$f(x)=f\left(a \cdot 10^{k}+m\right) \geq f\left(a \cdot 10^{k}\right)-m \geq f\left(2 \cdot 10^{k}\right)-m=f\left(10^{k}\right)+10^{k}-2-m>f\left(10^{k}\right)-2 \geq f\left(10^{7}\right)-2>0$.
In short, if $x \geq 10^{7}$, then $f(x)>0$, so x is not semi-1. Therefore, there are only finitely many semi-1 numbers. [For the programming mentioned in the first line of the solution, it's a big help to know that you can stop looking at $n=10^{7}$.]

Source: Adam Atkinson, University of Pisa.

