Problem of the Week \#5
(Spring 2022)

Oneil Cruz, a shortstop for the Pittsburgh Pirates, had an OPS of 1.000 in Major League Baseball's 2021 season, according to MLB.com. The OPS statistic is a sum of two fractions: the on-base percentage and the slugging percentage. For Cruz, it looks like this sum is exactly equal to 1 - but it might not be, since the website rounds OPS to three decimal places.
Find the smallest integer N for which there are positive integers a, b, c, and d such that $b \leq N, d \leq N$, and $\left|\frac{a}{b}+\frac{c}{d}-1\right|$ is in the open interval $(0,0.0005)$.

Solution:

The smallest possible value is $N=46$.
Proof. Taking $(a, b, c, d)=(1,45,45,46)$, we have:

$$
\left|\frac{a}{b}+\frac{c}{d}-1\right|=\frac{1}{45}+\frac{45}{46}-1=\frac{46+45^{2}-45 \cdot 46}{45 \cdot 46}=\frac{1}{2070} \in\left(0, \frac{1}{2000}\right) .
$$

On the other hand, suppose that $0<\left|\frac{a}{b}+\frac{c}{d}-1\right|<\frac{1}{M}$ with $M \geq 2$ (in fact, we will take $M=$ 2000), and suppose without loss of generality that $b \leq d$. Finding a common denominator, we have $0<\frac{|a d+b c-b d|}{b d}<\frac{1}{M}$, and since the numerator must be a positive integer, we have $\frac{1}{b d}<\frac{1}{M}$, which means $b d>M$. We consider two cases. First, if $b<d$, then $d(d-1) \geq d b>M$. On the other hand, if $b=d$, then:

$$
\begin{aligned}
\frac{|a d+b c-b d|}{b d} & <\frac{1}{M} \\
\frac{|a+c-d|}{d} & <\frac{1}{M} \\
\frac{1}{d} & <\frac{1}{M} \\
d & >M .
\end{aligned}
$$

Now $d-1>M-1 \geq 2-1=1$, so $d(d-1)>d>M$.
In either case $d(d-1)>M$. Taking $M=2000$, we have $d^{2}-d-2000>0$, which means that either $d<\frac{1-\sqrt{8001}}{2} \approx-44.2$ or $d>\frac{1+\sqrt{8001}}{2} \approx 45.2$. Since d is a positive integer, $d \geq 46$.

Source: Prof. Dan Swenson (Black Hills State University).

