Problem of the Week \#4

(Spring 2022)

Let x and y be real numbers such that

$$
\left\{\begin{aligned}
\log \sin x+\log \cos x & =-1 \\
\log (\sin x+\cos x) & =-1+\frac{1}{2} \log y
\end{aligned}\right.
$$

where "log" denotes the common (base-10) logarithm. Solve for y.

Solution:

The first equation tells us that $\log (\sin x \cos x)=-1$, so $\sin x \cos x=\frac{1}{10}$. Therefore:

$$
\begin{aligned}
\log y & =2+2 \log (\sin x+\cos x) \\
& =2+\log \left[(\sin x+\cos x)^{2}\right] \\
& =2+\log \left(\sin ^{2} x+2 \sin x \cos x+\cos ^{2} x\right) \\
& =\log 100+\log \left(1+2 \cdot \frac{1}{10}\right) \\
& =\log \left(100 \cdot \frac{12}{10}\right) \\
& =\log 120 .
\end{aligned}
$$

Hence $y=120$.
Source: Adapted from Problem \#4 of the 2003 American Invitational Mathematics Exam. In: Scott A. Annin. A Gentle Introduction to the American Invitational Mathematics Exam. The Mathematical Association of America (2015), 120-121.

