Problem of the Week \#2

(Spring 2022)

Let $f(x)=x^{9}-6 x^{7}+9 x^{5}-4 x^{3}$. Show that if x is an integer, then $f(x)$ is divisible by 8640 .

Solution:

$$
\begin{aligned}
f(x) & =x^{3}\left(u^{3}-6 u^{2}+9 u-4\right) \quad\left(u=x^{2}\right) \\
& =x^{3}(u-1)\left(u^{2}-5 u+4\right) \\
& =x^{3}(u-1)^{2}(u-4) \\
& =x^{3}(x-1)^{2}(x+1)^{2}(x-2)(x+2) .
\end{aligned}
$$

Therefore:

- Among any four consecutive integers, there is a multiple of 4 and another multiple of 2. Since $f(x)$ is a multiple of $[(x-2)(x-1)(x)(x+1)][(x-1)(x)(x+1)(x+2)], f(x)$ is divisible by $8^{2}=2^{6}$.
- Among any three consecutive integers, there is a multiple of 3 . Since

$$
f(x)=[(x-2)(x-1)(x)] \cdot[(x-1)(x)(x+1)] \cdot[(x)(x+1)(x+2)],
$$

$f(x)$ is divisible by 3^{3}.

- Among any five consecutive integers, there is a multiple of 5 . Since $f(x)$ is a multiple of $(x-2)(x-1)(x)(x+1)(x+2), f(x)$ is divisible by 5 .

Since $2^{6}, 3^{3}$, and 5 are relatively prime, $f(x)$ is divisible by $2^{6} \cdot 3^{3} \cdot 5=8640$.
Source: Charles W. Trigg. "127. Quantity Divisible by 8640." Mathematical Quickies: 270 Stimulating Problems with solutions. New York: Dover Publications, Inc. (2013), 36, 135.

