Problem of the Week \#1
(Spring 2022)

The eight segments that form the figure below are all equally long, and the angles formed by their intersections are all exact multiples of 45°. If a point in the square $A B C D$ is chosen at random (uniformly), find the probability that the chosen point lies in the square $E F G H$.

Solution:

Label J, K, and L as in the figure. Let x and y denote the side lengths of the inner square and the outer square respectively; the desired probability is the area ratio $P=\frac{x^{2}}{y^{2}}$. Since $F G$ and $E H$ are parallel, $|J K|=|E F|=x$. Then, because $\triangle B K J$ is an isosceles right triangle with hypotenuse $x,|B K|=\frac{x}{\sqrt{2}}$. Likewise, $\triangle C L K$ is an isosceles right triangle with hypotenuse y, so $|K C|=\frac{y}{\sqrt{2}}$. Now we have

$$
\begin{aligned}
|B C| & =|B K|+|K C| \\
y & =\frac{x}{\sqrt{2}}+\frac{y}{\sqrt{2}} \\
y \sqrt{2} & =x+y \\
y(\sqrt{2}-1) & =x \\
y^{2}(2-2 \sqrt{2}+1) & =x^{2} \\
P=\frac{x^{2}}{y^{2}} & =3-2 \sqrt{2} \approx 0.1716 .
\end{aligned}
$$

Source: Titu Andreescu and Jonathan Kane. Purple Comet! Math Meet: The first ten years. XYZ Press (2013), 204-5.

