Problem of The Week \#10

(Spring 2021)

Let $f(x)$ and $g(x)$ be polynomials with rational coefficients, with $g(x) \neq 0$. Suppose that there are infinitely many integers a for which $\frac{f(a)}{g(a)}$ is an integer. Show that $f(x)$ is a multiple of $g(x)$; in other words, $f(x)=g(x) q(x)$, where $q(x)$ is a polynomial with rational coefficients.

Solution:

Proof. By long division, we can write $f(x)=q(x) g(x)+r(x)$, where q and r are polynomials with rational coefficients and $\operatorname{deg} r<\operatorname{deg} g$. Let d be a common denominator for the coefficients of $q(x)$, so that $d q(x)$ has integer coefficients.
Now suppose a is an integer and $\frac{f(a)}{g(a)}$ is an integer. Then $d \cdot \frac{f(a)}{g(a)}$ is an integer, as is $d q(a)$. Thus their difference,

$$
d \cdot \frac{f(a)}{g(a)}-d q(a)=d \cdot \frac{q(a) g(a)+r(a)}{g(a)}-d \cdot \frac{q(a) g(a)}{g(a)}=d \cdot \frac{r(a)}{g(a)}
$$

is an integer as well.
But because $\operatorname{deg} r<\operatorname{deg} g$, we know $\lim _{x \rightarrow \infty} \frac{r(x)}{g(x)}=0$, so eventually $\left|d \cdot \frac{r(a)}{g(a)}\right|<1$. If $\frac{f(a)}{g(a)}$ is an integer for infinitely many integers a, then $d \cdot \frac{r(a)}{g(a)}=0$ for all but finitely many of them. Then r is a polynomial with infinitely many zeros, so $r(x)=0$, and therefore $\frac{f(x)}{g(x)}=q(x)$, a polynomial with rational coefficients.

Source: Titu Andreescu and Zuming Feng. USA and International Mathematical Olympiads 2002. Washington: The Mathematical Association of America (2003), 44-45.

