Problem of the Week \#9

(Spring 2021)

Suppose $x_{1}=0, x_{2}=1$, and when $n \geq 1, x_{n+2}=x_{n+1}+\frac{x_{n}}{n}$. Find $\lim _{n \rightarrow \infty} \frac{n}{x_{n}}$.

Solution:

The limit is e.
Proof. For $n \geq 2$, let $d_{n}=\frac{x_{n}}{n}-\frac{x_{n-1}}{n-1}$. We claim that $d_{n}=\frac{(-1)^{n}}{n!}$. The proof is by induction on $n: d_{2}=\frac{x_{2}}{2}-x_{1}=\frac{1}{2}$, and for $n \geq 3$,

$$
\begin{aligned}
d_{n} & =\frac{x_{n}}{n}-\frac{x_{n-1}}{n-1} \\
& =\frac{1}{n}\left(x_{n-1}+\frac{x_{n-2}}{n-2}\right)-\frac{x_{n-1}}{n-1} \\
& =\frac{1}{n}\left[\frac{(n-1) x_{n-1}}{n-1}+\frac{x_{n-2}}{n-2}-\frac{n x_{n-1}}{n-1}\right] \\
& =-\frac{1}{n}\left[\frac{x_{n-1}}{n-1}-\frac{x_{n-2}}{n-2}\right] \\
& =-\frac{1}{n} d_{n-1} .
\end{aligned}
$$

The d_{n} are the terms of a telescoping sum: $\sum_{k=2}^{n} d_{k}=\frac{x_{n}}{n}-\frac{x_{1}}{1}=\frac{x_{n}}{n}$. On the other hand,

$$
\sum_{k=2}^{n} d_{k}=\sum_{k=2}^{n} \frac{(-1)^{k}}{k!}=1-1+\sum_{k=2}^{n} \frac{(-1)^{k}}{k!}=\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}
$$

which gives us

$$
\lim _{n \rightarrow \infty} \frac{n}{x_{n}}=\frac{1}{\lim _{n \rightarrow \infty} \frac{x_{n}}{n}}=\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}=\frac{1}{e^{-1}}=e .
$$

Source: Daniel J. Velleman and Stan Wagon. Bicycle or Unicycle? Providence: MAA Press (2020), 65, 189.

