
Problem of the Week #8
(Spring 2021)

Find every set {(a, p), (b, q)} of distinct ordered pairs of positive integers such that, for all n,
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Solution:

The only such sets are {(1,2q), (3, q)} (for any integer q).

Proof. It is well known that for any n and q,
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for every n. We can assume that p and q are
relatively prime; if not, take the dth root of both sides of the equation, where d = gcd{p, q}.
Suppose without loss of generality that a < b. Taking n = 2,
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1 + p2a
≡ 1 (mod 2a+1
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Thus p is even (say, p = 2`), and because p and q are relatively prime, q is odd (say,
q = 2m+ 1). Looking back to our equation (1a

+ 2a
)
p
= (1b

+ 2b
)
q, each side must be a perfect

square (because p is even), so 1 + 2b is a perfect square (because q is odd). Fix r ∈ Z with
1+ 2b

= r2. Then 2b
= (r − 1)(r + 1), which means that r − 1 and r + 1 are powers of two that

differ by 2. Hence r = 3, and so b = 3.
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2 ` = 0,
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)
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= 1 when a ≥ 2, so a = 1. Therefore p = 2q.
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