Problem of the Week \#8

(Spring 2021)

Find every set $\{(a, p),(b, q)\}$ of distinct ordered pairs of positive integers such that, for all n,

$$
\left[\sum_{i=1}^{n} i^{a}\right]^{p}=\left[\sum_{j=1}^{n} j^{b}\right]^{q} .
$$

Solution:

The only such sets are $\{(1,2 q),(3, q)\}$ (for any integer $q)$.
Proof. It is well known that for any n and q,

$$
(1+2+\cdots+n)^{2 q}=\left(\frac{n(n+1)}{2}\right)^{2 q}=\left(\frac{n^{2}(n+1)^{2}}{4}\right)^{q}=\left(1^{3}+2^{3}+\cdots+n^{3}\right)^{q} .
$$

Conversely, suppose $\left[\sum_{i=1}^{n} i^{a}\right]^{p}=\left[\sum_{j=1}^{n} j^{b}\right]^{q}$ for every n. We can assume that p and q are relatively prime; if not, take the $d^{\text {th }}$ root of both sides of the equation, where $d=\operatorname{gcd}\{p, q\}$. Suppose without loss of generality that $a<b$. Taking $n=2$,

$$
\begin{aligned}
\left(1^{a}+2^{a}\right)^{p} & =\left(1^{b}+2^{b}\right)^{q} \\
\sum_{s=0}^{p}\binom{p}{s} 2^{a s} & =\sum_{t=0}^{q}\binom{q}{t} 2^{b t} \\
1+p 2^{a} & \equiv 1 \quad\left(\bmod 2^{a+1}\right) \\
p 2^{a} & \equiv 0 \quad\left(\bmod 2^{a+1}\right)
\end{aligned}
$$

Thus p is even (say, $p=2 \ell$), and because p and q are relatively prime, q is odd (say, $q=2 m+1)$. Looking back to our equation $\left(1^{a}+2^{a}\right)^{p}=\left(1^{b}+2^{b}\right)^{q}$, each side must be a perfect square (because p is even), so $1+2^{b}$ is a perfect square (because q is odd). Fix $r \in \mathbb{Z}$ with $1+2^{b}=r^{2}$. Then $2^{b}=(r-1)(r+1)$, which means that $r-1$ and $r+1$ are powers of two that differ by 2 . Hence $r=3$, and so $b=3$.

$$
\begin{aligned}
\left(1^{a}+2^{a}\right)^{p} & =\left(1^{3}+2^{3}\right)^{q} \\
\left(1+2^{a}\right)^{2 \ell} & =9^{2 m+1} \\
\left(1+2^{a}\right)^{\ell} & =9^{m} \cdot 3 \\
\left(1+2^{a}\right)^{\ell} & \equiv 1^{m} \cdot 3=3 \quad(\bmod 4) .
\end{aligned}
$$

But $\left(1+2^{0}\right)^{\ell}=2^{\ell} \equiv\left\{\begin{array}{ll}2 & \ell=0, \\ 0 & \ell \geq 1,\end{array}\right.$ and $\left(1+2^{a}\right)^{\ell} \equiv 1^{\ell}=1$ when $a \geq 2$, so $a=1$. Therefore $p=2 q$.

Source: Seljon Akhmedli. "The Carousel - Oldies But Goodies: P.S.P.I (C31)." Math Horizons 28:2 (November 2020), 31, 33.

