Problem of the Week \#6
(Spring 2021)

Lines parallel to the sides of a triangle T intersect at a single point inside T, forming three smaller triangles of area 1,4 , and 9 . Find the area of T.

Solution:

The area of T is 36 .
Proof. Name points as shown. Each shaded triangle is similar to T, and since their areas are in the ratio $1: 4: 9$, their sides are in the ratio $1: 2: 3$. Thus $D E+E F=G H$. On the other hand, $D E=B G$ and $E F=H C$, so

$$
B C=B G+G H+H C=D E+(D E+E F)+E F=2(D E+E F) .
$$

That is, the base of T is twice the base of $\triangle E G H$. By similarity, the altitude of T is twice the altitude of $\triangle E G H$, and thus the area of T is $4 \cdot 9=36$.

Source: Titu Andreescu and Jonathan Kane. Purple Comet! Math Meet: The first ten years. Plano: XYZ Press, LLC (2013), 99-100.

