Problem of the Week \#4
(Spring 2021)

Dr. Black owns 8 different pairs of socks. When he does laundry, paired socks are always washed together, and the number of pairs of socks in a load follows a uniform distribution between 0 and 8 pairs.
The other day Dr. Black was pulling socks out of the dryer and noticed that he had pulled out 6 single socks without completing a pair! What is the probability there were exactly 6 pairs of socks in this load?

Solution:

The probability is $\frac{13}{83}$.
Proof. Assume that socks are removed from the dryer one at a time. Let A_{n} be the event that exactly n pairs of socks were initially in the dryer, and let B denote the event that the first six socks removed from the dryer are from different pairs. We want to compute $P\left(A_{6} \mid B\right)$, and we are given that $P\left(A_{n}\right)= \begin{cases}\frac{1}{9}, & 0 \leq n \leq 8 ; \\ 0, & \text { else. }\end{cases}$
By the pigeonhole principle, $P\left(B \mid A_{n}\right)=0$ when $n<6$. Assuming that $6 \leq n \leq 8$, we find

$$
P\left(B \mid A_{n}\right)=\frac{(2 n)(2 n-2) \ldots(2 n-10)}{(2 n)(2 n-1) \ldots(2 n-5)}=\frac{2^{6} \cdot n!/(n-6)!}{(2 n)!/(2 n-6)!}=\frac{2^{6}(n)!(2 n-6)!}{(2 n)!(n-6)!} .
$$

Thus

$$
P(B)=\sum_{n} P\left(B \mid A_{n}\right) P\left(A_{n}\right)=\frac{1}{9} \sum_{n=6}^{8} P\left(B \mid A_{n}\right)=\frac{1}{9}\left[\frac{16}{231}+\frac{64}{429}+\frac{32}{143}\right]=\frac{1328}{27027} .
$$

By Bayes's theorem,

$$
P\left(A_{6} \mid B\right)=\frac{P\left(B \mid A_{6}\right) P\left(A_{6}\right)}{P(B)}=\frac{\left(\frac{16}{231}\right)\left(\frac{1}{9}\right)}{\left(\frac{1328}{27027}\right)}=\frac{13}{83} \approx 15.66 \% .
$$

Source: Prof. Michael Black.

