Problem of the Week \#2
(Spring 2021)

Suppose that a, b, and c are positive integers with

$$
c=(a+b i)^{3}-107 i
$$

(where as usual $i^{2}=-1$). Find c.

Solution:

Solution.

$$
\begin{aligned}
& c=(a+b i)^{3}-107 i c=a^{3}+3 a^{2} b i-3 a b^{2}-b^{3} i-107 i \\
& c+0 i=\left(a^{3}-3 a b^{2}\right)+\left(3 a^{2} b-b^{3}-107\right) \\
& \left\{\begin{aligned}
c & =a^{3}-3 a b^{2} \\
0 & =3 a^{2} b-b^{3}-107 \\
107 & =b\left(3 a^{2}-b^{2}\right)
\end{aligned}\right.
\end{aligned}
$$

Hence $b \mid 107$, which is prime, so $b=1$ or $b=107$.
We claim that $b=1$. Suppose, on the contrary, that $b=107$. Then $3 a^{2}-b^{2}=1$, so

$$
3 a^{2}=1+b^{2}=1+107^{2}=11450
$$

which is impossible since $3+11450$.
Since $b=1$, we have:

$$
\begin{aligned}
107 & =3 a^{2}-1 \\
108 & =3 a^{2} \\
36 & =a^{2} \\
6 & =a \\
c & =6^{3}-3(6)(1)^{2} \\
c c & =198 .
\end{aligned}
$$

Source: 1985 AIME, Problem \#3. In Annin, Scott. A Gentle Introduction to the American Invitational Mathematics Exam (2015), pp. 151, 315.

