

PROBLEM OF THE WEEK #1 (Spring 2021)

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, and let S' denote U - S, the complement of S in U. In how many ways can we find subsets A, B, and C of U with the following six properties?

 $A \cap B = \{4\}$ $A \cap C = \{3\}$ $B \cap C = \emptyset$ $A \cup C = \{2, 3, 4, 5, 7, 9\}$ $|A \cap B'| = 3$ $|(A \cup B \cup C)'| = 2$

Solution:

There are 18 solutions.

Proof. First,

$$\{1, 6, 8\} = (A \cup C)' = A' \cap C' = (A' \cap B \cap C') \sqcup (A' \cap B' \cap C').$$

Since $|A' \cap B' \cap C'| = |(A \cup B \cup C)'| = 2$, $A' \cap B' \cap C'$ is a 2-element subset of $\{1, 6, 8\}$, and the other element of $\{1, 6, 8\}$ is the only element of $A' \cap B \cap C'$.

We know $A \cap B \cap C' \subseteq A \cap B = \{4\}$. On the other hand, since $B \cap C = \emptyset$, we know $4 \notin C$, so $4 \in A \cap B \cap C'$. Thus $A \cap B \cap C' = \{4\}$.

Likewise, $A \cap B' \cap C \subseteq A \cap C = \{3\}$. On the other hand, since $B \cap C = \emptyset$, we know $3 \notin B$, so $3 \in A \cap B' \cap C$. Thus $A \cap B' \cap C = \{3\}$. Since $|A \cap B'| = 3$, we conclude that $|A \cap B' \cap C'| = 2$. It follows that $(A \cap B' \cap C') \sqcup (A' \cap B' \cap C) = \{2, 5, 7, 9\}$. Thus $A \cap B' \cap C'$ is a 2-element subset of $\{2, 5, 7, 9\}$, and the other two elements of $\{2, 5, 7, 9\}$ are the only elements of $A' \cap B' \cap C$.

Conversely: Let S be any one-element subset of $\{1, 6, 8\}$ and let T be any two-element subset of $\{2, 5, 7, 9\}$, with $U = \{2, 5, 7, 8\} - T$. Then

$$(A, B, C) = (T \cup \{3, 4\}, S \cup \{4\}, U \cup \{3\})$$

satisfies all of the given properties. There are $\binom{3}{1} = 3$ choices for S and $\binom{4}{2} = 6$ choices for T, so there are $3 \cdot 6 = 18$ ways to choose (A, B, C) subject to the given requirements.

Source: Holly Attenborough.