Problem of the Week \#1

(Spring 2021)

Let $U=\{1,2,3,4,5,6,7,8,9\}$, and let S^{\prime} denote $U-S$, the complement of S in U. In how many ways can we find subsets A, B, and C of U with the following six properties?

$$
\begin{aligned}
A \cap B & =\{4\} \\
A \cap C & =\{3\} \\
B \cap C & =\varnothing \\
A \cup C & =\{2,3,4,5,7,9\} \\
\left|A \cap B^{\prime}\right| & =3 \\
\left|(A \cup B \cup C)^{\prime}\right| & =2
\end{aligned}
$$

Solution:

There are 18 solutions.
Proof. First,

$$
\{1,6,8\}=(A \cup C)^{\prime}=A^{\prime} \cap C^{\prime}=\left(A^{\prime} \cap B \cap C^{\prime}\right) \sqcup\left(A^{\prime} \cap B^{\prime} \cap C^{\prime}\right) .
$$

Since $\left|A^{\prime} \cap B^{\prime} \cap C^{\prime}\right|=\left|(A \cup B \cup C)^{\prime}\right|=2, A^{\prime} \cap B^{\prime} \cap C^{\prime}$ is a 2-element subset of $\{1,6,8\}$, and the other element of $\{1,6,8\}$ is the only element of $A^{\prime} \cap B \cap C^{\prime}$.
We know $A \cap B \cap C^{\prime} \subseteq A \cap B=\{4\}$. On the other hand, since $B \cap C=\varnothing$, we know $4 \notin C$, so $4 \in A \cap B \cap C^{\prime}$. Thus $A \cap B \cap C^{\prime}=\{4\}$.
Likewise, $A \cap B^{\prime} \cap C \subseteq A \cap C=\{3\}$. On the other hand, since $B \cap C=\varnothing$, we know $3 \notin B$, so $3 \in A \cap B^{\prime} \cap C$. Thus $A \cap B^{\prime} \cap C=\{3\}$. Since $\left|A \cap B^{\prime}\right|=3$, we conclude that $\left|A \cap B^{\prime} \cap C^{\prime}\right|=2$. It follows that $\left(A \cap B^{\prime} \cap C^{\prime}\right) \sqcup\left(A^{\prime} \cap B^{\prime} \cap C\right)=\{2,5,7,9\}$. Thus $A \cap B^{\prime} \cap C^{\prime}$ is a 2-element subset of $\{2,5,7,9\}$, and the other two elements of $\{2,5,7,9\}$ are the only elements of $A^{\prime} \cap B^{\prime} \cap C$. Conversely: Let S be any one-element subset of $\{1,6,8\}$ and let T be any two-element subset of $\{2,5,7,9\}$, with $U=\{2,5,7,8\}-T$. Then

$$
(A, B, C)=(T \cup\{3,4\}, S \cup\{4\}, U \cup\{3\})
$$

satisfies all of the given properties. There are $\binom{3}{1}=3$ choices for S and $\binom{4}{2}=6$ choices for T, so there are $3 \cdot 6=18$ ways to choose (A, B, C) subject to the given requirements.

Source: Holly Attenborough.

