Problem of the Week \#6

(Spring 2020)

Three circles are externally tangent to each other, and their centers are the vertices of a $30-60-90$ triangle T whose hypotenuse has length 16 . Find the area of the region that is inside T but outside all three circles.

Solution:

The area is $\frac{1}{3}[32 \sqrt{3}-160 \pi+64 \pi \sqrt{3}]$.
Proof. Let $T=\triangle A B C$ with $\angle A=90^{\circ}, \angle B=60^{\circ}$, and $\angle C=30^{\circ}$. Let a, b, and c be the radii of the circles centered at A, B, and C respectively. Now

$$
\left\{\begin{aligned}
a+b & =8 \\
a+c & =8 \sqrt{3} \\
b+c & =16
\end{aligned}\right.
$$

By adding these three equations, we get $2 a+2 b+2 c=24+8 \sqrt{3}$, so $a+b+c=12+4 \sqrt{3}$. Subtracting each equation in the original system from this sum, we have

$$
(a, b, c)=(4 \sqrt{3}-4,12-4 \sqrt{3}, 4+4 \sqrt{3})
$$

Now, the area of $\triangle A B C$ is $\frac{1}{2}(8)(8 \sqrt{3})=32 \sqrt{3}$. This triangle contains one quarter, one sixth, and one twelfth of the circles centered at A, B, and C respectively, so the desired area is

$$
\begin{gathered}
32 \sqrt{3}-\frac{1}{4}\left(\pi a^{2}\right)-\frac{1}{6}\left(\pi b^{2}\right)-\frac{1}{12}\left(\pi c^{2}\right)=32 \sqrt{3}-\pi\left(\frac{64-32 \sqrt{3}}{4}+\frac{192-96 \sqrt{3}}{6}+\frac{64+32 \sqrt{3}}{12}\right) \\
=\frac{1}{3}[32 \sqrt{3}-160 \pi+64 \pi \sqrt{3}] .
\end{gathered}
$$

Source: Andreescu, Titu, and Jonathan Kane. Purple Comet! Math Meet: The First Ten Years. XYZ Press (2013), pp. 122-123.

