
Problem of the Week #6
(Spring 2020)

Three circles are externally tangent to each other, and their centers are the vertices of a
30 − 60 − 90 triangle T whose hypotenuse has length 16. Find the area of the region that is
inside T but outside all three circles.

Solution:
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Proof. Let T =△ABC with ∠A = 90○, ∠B = 60○, and ∠C = 30○. Let a, b, and c be the radii
of the circles centered at A, B, and C respectively. Now
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a + b = 8,
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b + c = 16.

By adding these three equations, we get 2a + 2b + 2c = 24 + 8
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Subtracting each equation in the original system from this sum, we have
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Now, the area of △ABC is 1
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3. This triangle contains one quarter, one sixth,
and one twelfth of the circles centered at A, B, and C respectively, so the desired area is
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Source: Andreescu, Titu, and Jonathan Kane. Purple Comet! Math Meet: The First Ten
Years. XYZ Press (2013), pp. 122-123.


