Problem of the Week \#5

(Spring 2020)

Find all integers x and y for which $x^{3}+x^{2}+x+1=y^{3}$.

Solution:

The only integer solutions are $(x, y)=(0,1)$ and $(x, y)=(-1,0)$.
Proof. First of all,

$$
\begin{aligned}
0 & <3 x^{2}+(x-1)^{2}+1 \\
0 & <4 x^{2}-2 x+2 \\
x^{3}-3 x^{2}+3 x-1 & <x^{3}+x^{2}+x+1 \\
(x-1)^{3} & <x^{3}+x^{2}+x+1
\end{aligned}
$$

Secondly,

$$
\begin{aligned}
x \leq-1 & \text { or } x \geq 0 \\
2 x(x+1) & \geq 0 \\
2 x^{2}+2 x & \geq 0 \\
x^{3}+3 x^{2}+3 x+1 & \geq x^{3}+x^{2}+x+1 \\
(x+1)^{3} & \geq x^{3}+x^{2}+x+1
\end{aligned}
$$

So if $x^{3}+x^{2}+x+1=y^{3}$, then $(x-1)^{3}<y^{3} \leq(x+1)^{3}$, which means $y=x$ or $y=x+1$.
However, if $y=x$, then $x^{2}+x+1=0$, and then x is not an integer, nor even a real number, since the discriminant of this quadratic equation is $b^{2}-4 a c=-3<0$. It follows that $y=x+1$, and (by the above computation) that

$$
\begin{aligned}
(x+1)^{3} & =x^{3}+x^{2}+x+1 \\
x(x+1) & =0 \\
x=0 & \text { or } x=-1 .
\end{aligned}
$$

Source: Furdui, Ovidiu. "Quickies 980." Mathematics Magazine 81:2 (April 2008), pp. 156, 161.

