Problem of the Week \#3

(Spring 2020)

Of all the rational numbers in the open interval $\left(\frac{2018}{2019}, \frac{2019}{2020}\right)$, find the one with the smallest positive denominator.

Solution:

The desired rational number is $\frac{4037}{4039}$.
Proof. It is easy to check that

$$
\frac{2018}{2019}=\frac{4036}{4038}=1-\frac{2}{4038}<1-\frac{2}{4039}<1-\frac{2}{4040}=\frac{4038}{4040}=\frac{2019}{2020} .
$$

Thus $1-\frac{2}{4039}=\frac{4037}{4039}$ is in the given interval.
Conversely, let p and q be integers for which $q>0$ and $\frac{p}{q}$ is in the given interval. We have $\frac{p}{q}<\frac{2019}{2020}<1$, so $p<q$. Moreover,

$$
\begin{aligned}
& \frac{2018}{2019}<\frac{p}{q}<\frac{2019}{2020} \\
& \frac{-1}{2019}<\frac{p}{q}-1<\frac{-1}{2020} \\
& \begin{array}{rll}
\frac{1}{2019} & >\frac{q-p}{q} & >\frac{1}{2020} \\
\frac{1}{2019(q-p)} & >\frac{1}{q} & >\frac{1}{2020(q-p)}
\end{array} \\
& 2019(q-p)<q<2020(q-p)
\end{aligned}
$$

This implies that $q-p \neq 1$ (since q cannot be an integer between 2019 and 2020). But we know that $q-p$ is a positive integer, so $q-p \geq 2$. Therefore,

$$
4038=2019 \cdot 2 \leq 2019(q-p)<q .
$$

It follows that $q \geq 4039$.
Source: Michael Black, suggested by Wissner-Gross, Zach. "Can You Find A Number Worth Its Weight In Letters?" The Riddler (https://fivethirtyeight.com/features/ can-you-find-a-number-worth-its-weight-in-letters/), 10 January 2020.

