Problem of the Week \#2

(Spring 2020)

Prove that for any pair of relatively prime whole numbers x and n, there is some whole number t for which $1+x+\cdots+x^{t}$ is a multiple of n.
For example, if $x=168$ and $n=25$, we can find $1+x+x^{2}+x^{3}=4,770,025$.

Solution:

Proof. Let $a_{k}=\sum_{i=0}^{k} x^{i}=1+x+\cdots+x^{k}$. The set $A=\left\{a_{0}, \ldots, a_{n}\right\}$ contains $n+1$ whole numbers, so by the pigeonhole principle, there must be two elements of A - call them a_{b} and a_{c}, with $b<c$ - that leave the same remainder when divided by n. Then $a_{c}-a_{b}$ is a multiple of n. But

$$
a_{c}-a_{b}=x^{b+1}+\cdots+x^{c}=x^{b+1}\left(1+\cdots+x^{c-b-1}\right)=x^{b+1} a_{c-b-1},
$$

and since x is relatively prime to n, a_{c-b-1} must be a multiple of n. In other words, $1+x+\cdots+x^{t}$ is a multiple of n when $t=c-b-1$.

Source: Michael Reid. Solution of "Multiples Without Large Digits," posed by Gregory Galperin and Yury J. Ionin. American Mathematical Monthly 126:10 (December 2019), 950.

