## Problem of the Week \#10

 (Spring 2019)In the figure below (not to scale), the sides of $\triangle P O E$ and its height $P I$ are four consecutive integers. Find the area of rectangle PINE.


## Solution:

Let $h=P I$, and let $a<b<c$ be the sides of $\triangle P O E$. We can see that $P O>h$ and $E O>h$, so $h<b<c$.

- Suppose for the sake of contradiction that $a<h$. By the Pythagorean theorem,

$$
h-1=a=P E=P R+R E=\sqrt{2 h+1}+\sqrt{4 h+4} .
$$

Simplifying, we get $h^{3}-16 h^{2}+24 h+16=0$, but this equation has no integer solutions.
We conclude that $h<a$, so $(h, a, b, c)=(b-2, b-1, b, b+1)$. Let $p \in\{a, b, c\}$ be the length of the side perpendicular to the height $h$. By Heron's formula, we have:

$$
\begin{aligned}
\frac{1}{2} p h & =\sqrt{\left(\frac{3 b}{2}\right)\left(\frac{b+2}{2}\right)\left(\frac{b}{2}\right)\left(\frac{b-2}{2}\right)} \\
4 p^{2}(b-2)^{2} & =3 b^{2}(b+2)(b-2) \\
4 p^{2}(b-2) & =3 b^{2}(b+2)
\end{aligned}
$$

- Suppose for the sake of contradiction that $p=a=b-1$. Simplifying, we get $b^{3}-22 b^{2}+$ $20 b-8=0$, but this has no integer solutions.
- Suppose for the sake of contradiction that $p=c=b+1$. Simplifying, we get $b^{3}-6 b^{2}+$ $20 b-8=0$, but this has no integer solutions.

Thus $p=b$, and since $b \neq 0$, we have $4 b-8=3 b+6$, or $b=14$. Thus $h=12$, and the area of rectangle PINE is $14 \cdot 12=168$.
Source: Inspired by:
[Dud67] Henry Ernest Dudeney, 230: find the triangle, 536 puzzles and curious problems, 1967, pp. 71,278.

