Problem of the Week \#9
(Spring 2019)

For any integer $n \geq 1$, let $f(n)$ denote the number of times that the digit 2 appears in the integers from 1 through n. For example, $f(32)=14$, because the digit 2 appears in the natural numbers $\{2,12,20,21,22$ (twice), $23,24,25,26,27,28,29,32\}$.
Find an integer n with the property that $f(n)=n$.
Bonus challenge: Are there infinitely many values of n for which $f(n)=n$?

Solution:

One such integer is $n=10^{10}$.
Proof. Of the n integers between 1 and n, exactly $\frac{1}{10}$ of them have a 2 in any given decimal place. Since these integers contain 10 decimal places (including leading zeros where necessary, and ignoring the extra digit in n, which is not a 2), we get $f(n)=10(n / 10)=n$.

Solution to bonus challenge. There are only finitely many values of n with $f(n)=n$. To see this, let $N=10^{20}$. By the method we used above, we compute $f(N)=20(N / 10)=2 N$.
Now suppose $x>N$. Divide x by N to obtain integers q and r with $q \geq 1$ and $0 \leq r<N$ such that $x=q N+r$. Because N is a power of 10 , the last N integers from $((q-1) N+1)$ to $q N$ contain all the digits that appear in the N integers from 1 to N, plus extras. Thus $f(q N) \geq f((q-1) N)+f(N)$. By induction, we have $f(q N) \geq q f(N)$. Hence

$$
f(x) \geq f(q N) \geq q f(N)=q(2 N)=q N+q N \geq q N+N>q N+r=x .
$$

So if $f(x)=x$, then $x \leq N$. Hence only finitely many solutions exist.
Source: Treviño, Enrique. "Problem 2062." Mathematics Magazine 92:1 (February 2019), p. 72 .

