

## PROBLEM OF THE WEEK #8 (Spring 2019)

When L is a list of distinct terms, a *permutation* of L is a list of the same length with the same terms.

For example, 314265 is a permutation of 123456 with the property that none of the first 4 terms is greater than 4.

Find the number of permutations of 123456 such that for each k with  $1 \le k < 6$ , at least one of the first k terms of the permutation is greater than k.

## Solution:

The number is 461.

*Proof.* We say a permutation of  $1 \cdots n$  is good if for each k with  $1 \le k < n$ , at least one of the first k terms of the permutation is greater than k; otherwise the permutation is bad. Let  $g_n$  be the number of good permutations of  $1 \cdots n$ , and let  $b_n$  be the number of bad permutations of  $1 \cdots n$ . Our problem is to find  $g_6$ .

We know the following:

- Vacuously,  $g_1 = 1$  and  $b_1 = 0$ .
- For each n, we have  $g_n + b_n = n!$ .

Given a bad permutation P of  $1 \cdots n$ , let m = m(P) be the *least* natural number for which the first m terms of P are less than or equal to m. For each k with  $1 \le k < n$ , we can count the bad permutations of  $1 \cdots n$  with m = k: since m is minimal, the first k terms of such a permutation form a good permutation of  $1 \cdots k$ , so they can be chosen in  $g_k$  ways, while the remaining n - k terms can be chosen in (n - k)! ways. Thus, for each n, we have  $b_n = \sum_{k=1}^{n-1} g_k \cdot (n - k)!$ , and therefore

$$g_n = n! - \sum_{k=1}^{n-1} g_k(n-k)!$$

|   | $n \mid$ | $g_n$                                                  |                                                         |        |
|---|----------|--------------------------------------------------------|---------------------------------------------------------|--------|
| Γ | 2        | $2! - g_1(1!)$                                         | =2-(1)(1)                                               | = 1    |
|   | 3        | $3! - g_1(2!) - g_2(1!)$                               | = 6 - (1)(2) - (1)(1)                                   | = 3    |
|   | 4        | $4! - g_1(3!) - g_2(2!) - g_3(1!)$                     | = 24 - (1)(6) - (1)(2) - (3)(1)                         | = 13   |
|   | 5        | $5! - g_1(4!) - g_2(3!) - g_3(2!) - g_4(1!)$           | = 120 - (1)(24) - (1)(6) - (3)(2) - (13)(1)             | = 71   |
|   | 6        | $6! - g_1(5!) - g_2(4!) - g_3(3!) - g_4(2!) - g_5(1!)$ | = 720 - (1)(120) - (1)(24) - (3)(6) - (13)(2) - (71)(1) | = 461. |
| L | 0        | $0! - g_1(5!) - g_2(4!) - g_3(5!) - g_4(2!) - g_5(1!)$ | = (20 - (1)(120) - (1)(24) - (3)(0) - (13)(2) - (11)(1) | = 401  |

Source: Problem 11 of the 2018 American Invitational Mathematics Exam.