Problem of the Week \#8
(Spring 2019)

When L is a list of distinct terms, a permutation of L is a list of the same length with the same terms.
For example, 314265 is a permutation of 123456 with the property that none of the first 4 terms is greater than 4.
Find the number of permutations of 123456 such that for each k with $1 \leq k<6$, at least one of the first k terms of the permutation is greater than k.

Solution:

The number is 461 .
Proof. We say a permutation of $1 \cdots n$ is good if for each k with $1 \leq k<n$, at least one of the first k terms of the permutation is greater than k; otherwise the permutation is bad. Let g_{n} be the number of good permutations of $1 \cdots n$, and let b_{n} be the number of bad permutations of $1 \cdots n$. Our problem is to find g_{6}.
We know the following:

- Vacuously, $g_{1}=1$ and $b_{1}=0$.
- For each n, we have $g_{n}+b_{n}=n$!.

Given a bad permutation P of $1 \cdots n$, let $m=m(P)$ be the least natural number for which the first m terms of P are less than or equal to m. For each k with $1 \leq k<n$, we can count the bad permutations of $1 \cdots n$ with $m=k$: since m is minimal, the first k terms of such a permutation form a good permutation of $1 \cdots k$, so they can be chosen in g_{k} ways, while the remaining $n-k$ terms can be chosen in $(n-k)$! ways. Thus, for each n, we have $b_{n}=\sum_{k=1}^{n-1} g_{k} \cdot(n-k)!$, and therefore

$$
g_{n}=n!-\sum_{k=1}^{n-1} g_{k}(n-k)!
$$

n	g_{n}		$=2-(1)(1)$
$=1$			
2	$2!-g_{1}(1!)$	$=6-(1)(2)-(1)(1)$	$=3$
3	$3!-g_{1}(2!)-g_{2}(1!)$	$=24-(1)(6)-(1)(2)-(3)(1)$	$=13$
4	$4!-g_{1}(3!)-g_{2}(2!)-g_{3}(1!)$	$=120-(1)(24)-(1)(6)-(3)(2)-(13)(1)$	$=71$
5	$5!-g_{1}(4!)-g_{2}(3!)-g_{3}(2!)-g_{4}(1!)$	$=720-(1)(120)-(1)(24)-(3)(6)-(13)(2)-(71)(1)$	$=461$.
6	$6!-g_{1}(5!)-g_{2}(4!)-g_{3}(3!)-g_{4}(2!)-g_{5}(1!)$	$=1$	

Source: Problem 11 of the 2018 American Invitational Mathematics Exam.

