Problem of the Week \#6
(Spring 2019)

The decimal form of the integer N consists of 2019 nines in a row: $N=\underbrace{999 \cdots 999}_{2019}$.
How many nines occur in the decimal form of N^{3} ?

Solution:

There are 4037 nines in N^{3}.
Proof. Suppose, more generally, that N consists of k nines in a row.* Then for $k>1$:

$$
\begin{aligned}
N & =10^{k}-1 \\
N^{3} & =10^{3 k}-3 \cdot 10^{2 k}+3 \cdot 10^{k}-1 \\
& =10^{3 k}+(-10+7) \cdot 10^{2 k}+3 \cdot 10^{k}-1 \\
& =10^{3 k}-10^{2 k+1}+7 \cdot 10^{2 k}+3 \cdot 10^{k}-1 \\
& =10^{2 k+1}\left(10^{k-1}-1\right)+7 \cdot 10^{2 k}+3 \cdot 10^{k}-1 \\
& =\underbrace{99 \cdots 99}_{k-1} 7 \underbrace{00 \cdots 00}_{k-1} 2 \underbrace{99 \cdots 99}_{k} .
\end{aligned}
$$

(For example, $999^{3}=997002999$.) Thus N^{3} contains $2 k-1$ nines, $k-1$ zeros, a seven, and a two. When $k=2019$, there are $2(2019)-1=4037$ nines in N^{3}.

Source: Adapted from the 2009 Dutch Mathematical Olympiad, reprinted in Van den Brandhof, Alex, et al., eds. Half a Century of Pythagoras Magazine. The Mathematical Association of America (2015), 204.

[^0]
[^0]: *A pleasant assumption for all dog lovers and dentists.

