Problem of the Week \#5
(Spring 2019)

Nine is the smallest number that can be written as the sum of one or more consecutive positive integers in three different ways:

$$
2+3+4=4+5=9
$$

In how many ways can 2019 be written as the sum of one or more consecutive positive integers?

Solution:

There are exactly four ways:

$$
334+335+336+337+338+339=672+673+674=1009+1010=2019
$$

These sums are in one-to-one correspondence with the positive divisors of 2019, which are $\{1,3,673,2019\}$.
More generally, let n be a positive integer, and write $n=2^{k} m$ where m is odd. Define $C=\frac{-1+\sqrt{8 n+1}}{2}$. Suppose d is a divisor of m.

- If $d \leq C$, then d corresponds to the sum of (odd) length d whose terms have average value n / d. [Thus the middle term in the sum is the integer n / d.]
- If $d>C$, then d corresponds to the sum of (even) length $2 n / d$ whose terms have average value $d / 2$. [Thus the middle terms in the sum are the integers $\frac{d-1}{2}$ and $\frac{d+1}{2}$.]

This gives every sum of consecutive positive integers that equals n, because the correspondence is invertible:

- Given a sum of odd length d, we know that n is the product of d and the middle term in the sum, so $d \mid n$. But $\operatorname{gcd}(d, 2)=1$, so $d \mid m$. Also, the middle term is $\frac{n}{d}$ and is the $\left(\frac{d+1}{2}\right)^{\text {th }}$ term in the sum, so

$$
\frac{n}{d} \geq \frac{d+1}{2} \Rightarrow n \geq \frac{d^{2}+d}{2} \Rightarrow 2 n+\frac{1}{4} \geq\left(d+\frac{1}{2}\right)^{2} \quad \Rightarrow \quad d \leq C .
$$

- Given a sum of even length $2 k$, let $d=n / k$. Then the average value of the terms is $n / 2 k=d / 2$, and since the average value is between the two middle terms, it is not an integer, so d is odd. Thus $d \mid m$. Also, since the $k^{\text {th }}$ term is $\frac{d-1}{2}$, we have

$$
k \leq \frac{d-1}{2} \Rightarrow \frac{n}{d} \leq \frac{d-1}{2}<\frac{d+1}{2} \quad \Rightarrow \quad 2 n+\frac{1}{4}<\left(d+\frac{1}{2}\right)^{2} \quad \Rightarrow \quad d>C .
$$

