Problem of the Week \#4
 (Spring 2019)

Solve:

$$
\sqrt{6-\sqrt{6+x}}=x
$$

Solution:

Let $y=\sqrt{6+x}$. This means that $x=\sqrt{6-y}$. Notice that $x>0$ and $y>0$. We obtain:

$$
\left\{\begin{array}{l}
6+x=y^{2} \\
6-y=x^{2}
\end{array}\right.
$$

Subtracting these equations, we get:

$$
\begin{aligned}
x+y & =y^{2}-x^{2} \\
x^{2}-y^{2}+x+y & =0 \\
(x+y)(x-y+1) & =0
\end{aligned}
$$

Since $x+y>0$, we have $x-y+1=0$, which means $y=x+1$. We back-substitute:

$$
\begin{aligned}
6-x-1 & =x^{2} \\
0 & =x^{2}+x-5 \\
x & =\frac{-1 \pm \sqrt{1+4 \cdot 5}}{2}
\end{aligned}
$$

Since $x>0$, we have $x=\frac{-1+\sqrt{21}}{2}$.

Source:

[1] D. O. Shklarsky, N. N. Chentzov, and I. M. Yaglom, Problem 168, The USSR Olympiad Problem Book: Selected Problems and Theorems of Elementary Mathematics, 3rd ed. (Irving Sussman, ed.), translated by John Maykovich, Dover Publications, Inc., New York, 1993, pp. 39, 266.

