Problem of the Week \#3
(Spring 2019)

Find all integers k for which $0 \leq k \leq 99$ and $\binom{99}{k}$ is not divisible by 3 .

Solution:

The k-values are $\{0,9,18,81,90,99\}$.
Proof. We will be working with polynomials with integer coefficients. Given two such polynomials f and g, we shall write $f \equiv g$ when every coefficient of $f-g$ is divisible by 3 .
Notice that for any f and g, we have $(f+g)^{3}=f^{3}+3 f^{2} g+3 f g^{2}+g^{3}$, so $(f+g)^{3} \equiv f^{3}+g^{3}$. This fact is called a "Frobenius automorphism," or the "freshman's dream theorem." Applying it repeatedly, we have $f^{9}+g^{9} \equiv\left(f^{3}+g^{3}\right)^{3} \equiv\left((f+g)^{3}\right)^{3}=(f+g)^{9}$, and similarly with any power of 3 as the exponent. Therefore,

$$
\begin{aligned}
\sum_{k=0}^{99}\binom{99}{k} x^{k} & =(x+1)^{99} \\
& =(x+1)^{81}\left((x+1)^{9}\right)^{2} \\
& \equiv\left(x^{81}+1\right)\left(x^{9}+1\right)^{2} \\
& =x^{99}+2 x^{90}+x^{81}+x^{18}+2 x^{9}+1 .
\end{aligned}
$$

In other words, the remainder when $\binom{99}{k}$ is divided by 3 is $\begin{cases}1 & k=0,18,81,99 ; \\ 2 & k=9,90 ; \\ 0 & \text { otherwise } .\end{cases}$
Source: Sorel, Julien, in Mathematics Magazine 91:1 (2-2018), 72, 77.

