

PROBLEM OF THE WEEK #1 (Spring 2019)

Suppose $\triangle ABC$ has area 120, with |AB| = 50 and |AC| = 10. Let *D* be the midpoint of *AB*, and let *E* be the midpoint of *AC*. Suppose that the bisector of $\angle BAC$ intersects *DE* at *F* and intersects *BC* at *G*. Find the area of the quadrilateral *BDFG*.

Solution:

The area is 75.

Proof. Let θ denote the measure of $\angle AGC$, so that $180^{\circ} - \theta$ is the measure of $\angle AGB$, and let α denote half the measure of $\angle BAC$. Use the law of sines twice to obtain:

$$\frac{10\sin\alpha}{|CG|} = \sin\theta = \sin(180^\circ - \theta) = \frac{50\sin\alpha}{|BG|}.$$

It follows that |BG| = 5|CG|. (This is the "angle bisector theorem.") Drop altitudes from C, F, and G to AB with feet at H, J, and K respectively. Starting with the given area of $\triangle ABC$, we use similarity of triangles:

$$120 = \frac{1}{2}(50)|CH|$$

$$4.8 = |CH|$$

$$|GK| = \frac{5}{6}|CH| = 4$$

$$|FG| = \frac{1}{2}|GK| = 2$$

We can now find the area of BDFG by subtracting the area of $\triangle ADF$ from the area of triangle ABG, obtaining

$$\frac{1}{2}(50)(4) - \frac{1}{2}(25)(2) = 100 - 25 = \boxed{75}.$$