Problem of the Week \#1
(Spring 2019)

Suppose $\triangle A B C$ has area 120, with $|A B|=50$ and $|A C|=10$. Let D be the midpoint of $A B$, and let E be the midpoint of $A C$. Suppose that the bisector of $\angle B A C$ intersects $D E$ at F and intersects $B C$ at G. Find the area of the quadrilateral $B D F G$.

Solution:

The area is 75 .
Proof. Let θ denote the measure of $\angle A G C$, so that $180^{\circ}-\theta$ is the measure of $\angle A G B$, and let α denote half the measure of $\angle B A C$. Use the law of sines twice to obtain:

$$
\frac{10 \sin \alpha}{|C G|}=\sin \theta=\sin \left(180^{\circ}-\theta\right)=\frac{50 \sin \alpha}{|B G|} .
$$

It follows that $|B G|=5|C G|$. (This is the "angle bisector theorem.")
Drop altitudes from C, F, and G to $A B$ with feet at H, J, and K respectively. Starting with the given area of $\triangle A B C$, we use similarity of triangles:

$$
\begin{aligned}
120 & =\frac{1}{2}(50)|C H| \\
4.8 & =|C H| \\
|G K| & =\frac{5}{6}|C H|=4 \\
|F G| & =\frac{1}{2}|G K|=2
\end{aligned}
$$

We can now find the area of $B D F G$ by subtracting the area of $\triangle A D F$ from the area of triangle $A B G$, obtaining

$$
\frac{1}{2}(50)(4)-\frac{1}{2}(25)(2)=100-25=75 .
$$

