Problem of the Week \#10

(Spring 2018)

Let S be a square, and let R be the set of points in S that are closer to the center of S than to any edge of S. Find $\frac{\operatorname{area}(R)}{\operatorname{area}(S)}$.

Solution:

We choose a coordinate system so that S has edges where $x= \pm 1$ and where $y= \pm 1$.
The parabola with vertex $(0,0)$ and directrix $y=-1$ forms part of the boundary of R. This parabola passes through $(0,-1 / 2)$ and $(\pm 1,0)$, so it is $y=\left(x^{2}-1\right) / 2$. By symmetry, the boundary of R is formed by the parabolas $y= \pm\left(x^{2}-1\right) / 2$ and $x= \pm\left(y^{2}-1\right) / 2$.
By symmetry, these curves intersect in pairs at points where $y= \pm x$; the intersections are at $(\pm(\sqrt{2}-1), \pm(\sqrt{2}-1))$. The portion of R where $1-\sqrt{2} \leq x \leq \sqrt{2}-1$, and the portion
 where $1-\sqrt{2} \leq y \leq \sqrt{2}-1$, both have area

$$
\int_{1-\sqrt{2}}^{\sqrt{2}-1}\left(1-x^{2}\right) d x=\frac{8-4 \sqrt{2}}{3} .
$$

The union of those two regions is R, and their intersection is a square with side length $2 \sqrt{2}-2$, so the area of R is

$$
2 \cdot \frac{8-4 \sqrt{2}}{3}-(2 \sqrt{2}-2)^{2}=\frac{16 \sqrt{2}-20}{3}
$$

Therefore,

$$
\frac{\operatorname{area}(R)}{\operatorname{area}(S)}=\frac{4 \sqrt{2}-5}{3} \approx 0.21895 .
$$

Source:

[1] Nicholas R. Baeth, Loren Luther, and Rhonda McKee, The downtown problem: variations on a Putnam problem, Math. Mag. 90 (2017), no. 4, 243-257.
[2] Leonard F. Klosinski, Gerald L. Alexanderson, and Loren C. Larson, The Fiftieth William Lowell Putnam Mathematical Competition, Amer. Math. Monthly 98 (1991), no. 4, 319-327.

