

PROBLEM OF THE WEEK #8 (Spring 2018)

Happy π Day! In the multiplication problem below, each character (P, I, *, ~, #) stands for a single digit (and no two characters represent the same digit). Find the digit that each character represents.

Solution:

The only solution is $(P, I, *, \sim, \#) = (1, 8, 6, 7, 4)$.

Proof. Write a = P*I (that is, a = 100P + 10*+I), $b = PI \sim$, and c = ab = 3P#P*. We see that 100P < a < 100(P+1) and 100P < b < 100(P+1), so $10000P^2 < c < 10000(P+1)^2$. Thus $P^2 < \frac{c}{10000} < (P+1)^2$. Since $3 < \frac{c}{10000} < 4$, and $P \in \mathbb{N}$, we conclude that P = 1. Now, since a < 200, we have 31000 < ab < 200b, so $b > \frac{31000}{200} = 155$, so $I \ge 5$. Likewise, a > 155, so $* \ge 5$.

Because 31000 < ab < 32000, we can compute that (I, *) is one of the following pairs:

$$(5,9), (6,8), (6,9), (7,7), (7,8), (8,6), (8,7), (9,5), (9,6)$$

Finally, * is the ones digit of $(I)(\sim)$, so the possible triples $(I, \sim, *)$ are:

$$(5, -, 9), (6, 3, 8), (6, -, 8), (6, -, 9), (7, 4, 8), (8, 2, 6), (8, 7, 6), (8, -, 7), (9, -, 5), (9, 4, 6)$$

These triples represent the following products:

$(I, \sim, *)$	a	b	ab
(6,3,8)	186	163	30318
(7, 4, 8)	187	174	32538
(8, 2, 6)	168	182	30576
(8, 7, 6)	168	187	31416
(9, 4, 6)	169	194	32786

Only the fourth triple gives us a c value of the right size: