Problem of the Week \#7

(Spring 2018)

When you draw straight line segments joining all vertices of a regular pentagon P, you make a smaller regular pentagon Q inside. If P has sides of length a and Q has sides of length b, show that the distance d from a vertex of P to the nearest vertices of Q is $\sqrt{a b}$.

Solution:

Proof. The angles of a regular pentagon measure 108°. This means that the isosceles triangle $\triangle D F J$ has base angles 72° and vertex angle 36°, while isosceles triangle $\triangle C D J$ has vertex angle 108° and base angles 36°.
Applying the law of sines to these triangles, we get $\frac{a}{\sin 108^{\circ}}=\frac{d}{\sin 36^{\circ}}$ and $\frac{d}{\sin 72^{\circ}}=\frac{b}{\sin 36^{\circ}}$. Thus

$$
a \cdot b=\frac{d \sin 108^{\circ}}{\sin 36^{\circ}} \cdot \frac{d \sin 36^{\circ}}{\sin 72^{\circ}}=d^{2} \cdot \frac{\sin 108^{\circ}}{\sin 72^{\circ}} .
$$

But since $108+72=180$, we have $\sin 108^{\circ}=\sin 72^{\circ}$, which means $a b=d^{2}$, as desired.
Remark. This means that $\frac{a}{d}=\frac{d}{b}$; in fact, these fractions equal the golden ratio $\phi=\frac{1+\sqrt{5}}{2}$.

