Problem of the Week \#4
(Spring 2018)

There are 3 ways to write 6 as a sum of two positive odd numbers:

1. $5+1$
2. $3+3$
3. $1+5$

How many ways are there to write 2018 as a sum of 10 positive odd numbers?

Solution:

There are $\binom{1013}{9}$ ways, which is about 3 billion trillion.
Proof. We answer the more general question: In how many ways can we write the even integer $2 n$ as a sum of m positive odd integers?
If m is odd, then any sum of m odd integers is odd, so there is no sum of m positive odd integers that equals $2 n$, so from now on, we assume that m is even, and write $m=2 k$.
We seek non-negative integers x_{i} such that

$$
\begin{aligned}
2 n & =\left(2 x_{1}+1\right)+\left(2 x_{2}+1\right)+\cdots+\left(2 x_{2 k}+1\right) \\
2 n & =2\left(x_{1}+x_{2}+\cdots+x_{2 k}\right)+2 k \\
n & =x_{1}+x_{2}+\cdots+x_{2 k}+k \\
n-k & =x_{1}+x_{2}+\cdots+x_{2 k}
\end{aligned}
$$

So we need to know the number of ways to write $n-k$ as a sum of $2 k$ non-negative integers. This can be represented as the number of arrangements containing $n-k$ stars and $2 k-1$ bars: the bars divide the stars into groups. For example, if $n=3$ and $k=1$, we have 2 stars and 1 bar. Such arrangements correspond to ways of writing 2 as a sum of 2 non-negative integers, or writing 6 as a sum of 2 positive odd integers:

Arrangement	$x_{1}+x_{2}$	$\left(2 x_{1}+1\right)+\left(2 x_{2}+1\right)$
$* * \mid$	$2+0$	$5+1$
$* \mid *$	$1+1$	$3+3$
$\mid * *$	$0+2$	$1+5$

In each arrangement, there are $n-k+2 k-1=n+k-1$ characters, so there are $\binom{n+k-1}{2 k-1}$ arrangements. Taking $n=1009$ and $k=5$, we have
$\binom{1009+5-1}{2 \cdot 5-1}=\binom{1013}{9}=\frac{1013 \cdot 1012 \cdot 1011 \cdot 1010 \cdot 1009 \cdot 1008 \cdot 1007 \cdot 1006 \cdot 1005}{9!}=\frac{1013 \cdot(4 \cdot 253) \cdot(3 \cdot 337) \cdot(2 \cdot 505) \cdot 1009 \cdot(9 \cdot 8 \cdot 7 \cdot 2) \cdot 1007 \cdot 1006 \cdot(5 \cdot 3 \cdot 67)}{9!}$ $=1013 \cdot 253 \cdot 337 \cdot 505 \cdot 1009 \cdot 1007 \cdot 1006 \cdot 67=2,987,064,948,892,522,439,590$ arrangements.

