Problem of the Week \#3
(Spring 2018)

We say a function f has width d if there is a horizontal line segment of length d whose endpoints are both on the graph $y=f(x)$. For example, if $f(x)=x^{3}-x$, then f has width 2 because $(-1,0)$ and $(1,0)$ are both on the graph of f.
Suppose that g is a continuous function with domain $(-\infty, \infty)$ that has both an absolute maximum and an absolute minimum. Is it true that g must have width d for every $d>0$?

Solution:

It is true.
Proof. Let g be continuous on $(-\infty, \infty)$. Suppose that g has an absolute maximum at $x=a$ and an absolute minimum at $x=b$. Let $d>0$.
Define $h(x)=g(x)-g(x-d)$. Then h is continuous on $(-\infty, \infty), h(a)=g(a)-g(a-d) \geq 0$, and $h(b)=g(b)-g(b-d) \leq 0$. Therefore, by the intermediate value theorem, there is some c between a and b such that $h(c)=0$. Then $g(c)=g(c-d)$, so the line segment from $(c-d, g(c-d))$ to $(c, g(c))$ is horizontal and d units long. This shows that g has width d.

Source: Mortini, Raymond. "Quickies 1075." Mathematics Magazine 90:5 (December 2017), pp. 384, 393.

