Problem of the Week \#2
(Spring 2018)

The longer edge of a golden rectangle is ϕ times as long as the shorter edge, where $\phi=\frac{1+\sqrt{5}}{2}$. If you fold a golden rectangle so that its opposite corners touch, what is the ratio of the length of the crease to the length of the longer edge?

Solution:

First notice that $\phi^{2}=\phi+1$: we'll use this fact later.
Let $A B C D$ be a golden rectangle, with $A B=\phi$ and $B C=1$. When we fold this rectangle so that A lies on C, the fold line is the perpendicular bisector of $A C$, so it passes through the center of the rectangle, intersecting $A B$ at E and $C D$ at F. Let $x=|B E|$. Since E is on the fold, we have $C E=A E=$ $\phi-x$. By the Pythagorean theorem,

$$
x^{2}+1=(\phi-x)^{2}=\phi^{2}-2 \phi x+x^{2}=\phi+1-2 \phi x+x^{2} .
$$

It follows that $\phi=2 \phi x$, so $x=\frac{1}{2}$. By symmetry, we have $|D F|=\frac{1}{2}$. The perpendicular to $C D$ through E meets $C D$ at H, and $|F H|=\phi-1$.
Now let $y=|E F|$ be the length of the fold. By the Pythagorean theorem,

$$
y^{2}=1+(\phi-1)^{2}=1+\phi^{2}-2 \phi+1=2+(\phi+1)-2 \phi=3-\phi .
$$

It follows that $y=\sqrt{3-\phi}$, and

$$
\frac{y}{\phi}=\sqrt{\frac{3-\phi}{\phi^{2}}}=\sqrt{\frac{5-\sqrt{5}}{2} \cdot \frac{2}{3+\sqrt{5}}}=\sqrt{\frac{(5-5 \sqrt{5})(3-\sqrt{5})}{4}}=\sqrt{5-2 \sqrt{5}} \approx 0.72654 .
$$

