Problem of the Week \#1
(Spring 2018)

The perfect powers form a multiset

$$
P=\left\{2^{2}, 2^{3}, 2^{4}, \ldots, 3^{2}, 3^{3}, 3^{4}, \ldots, 4^{2}, 4^{3}, 4^{4}, \ldots\right\} .
$$

A multiset is just like a set, except that elements can occur multiple times. For example, $64=2^{6}=4^{3}=8^{2}$, so 64 appears three times in $P$.
Find the sum of the reciprocals of the perfect powers: $\sum_{n \in P} \frac{1}{n}$.
To be clear, the term $\frac{1}{64}$ appears three times in this sum.

## Solution:

Using the geometric series formula and partial fractions, we can turn the problem into a telescoping sum:

Proof.

$$
\begin{aligned}
\sum_{n \in P} \frac{1}{n} & =\sum_{k=2}^{\infty} \sum_{m=2}^{\infty} \frac{1}{k^{m}} \\
& =\sum_{k=2}^{\infty} \frac{1 / k^{2}}{1-(1 / k)} \\
& =\sum_{k=2}^{\infty} \frac{1}{k^{2}-k} \\
& =\sum_{k=2}^{\infty}\left(\frac{1}{k-1}-\frac{1}{k}\right) \\
& =\lim _{N \rightarrow \infty} \sum_{k=2}^{N}\left(\frac{1}{k-1}-\frac{1}{k}\right) \\
& =\lim _{N \rightarrow \infty} 1-\frac{1}{N} \\
& =1 .
\end{aligned}
$$

