
Problem of the Week #10
(Spring 2017)

Prove: If α and β are complementary angles, then tan(β − α) + sec(β − α) = tanβ.

Solution:

Proof. The figure provides a proof in the case that α and β are both acute, with β > α.
Let △ABC be a right triangle with angles α at A and β at B, scaled so that ∣BC ∣ = 1.
The perpendicular bisector of AB crosses AC at E (since α < β). By the SAS theorem,
∠ABE = α, so ∠EBC = β − α. Thus ∣EC ∣ = tan(β − α) and ∣BE∣ = sec(β − α).
Finally, note that ∠ABE = ∠BAE, so △ABE is isosceles, and ∣AE∣ = ∣BE∣ = sec(β − α).
Hence

sec(β − α) + tan(β − α) = ∣AE∣ + ∣EC ∣ = ∣AC ∣ = tanβ.

Alternate proof.
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Source: Inspired by Francisco Javier Garćıa Capitán, “Proof Without Words: Tangents of
15 and 75 Degrees.” College Mathematics Journal 48:1 (January 2017), 35.


