Problem of the Week \#10
(Spring 2017)

Prove: If α and β are complementary angles, then $\tan (\beta-\alpha)+\sec (\beta-\alpha)=\tan \beta$.

Solution:

Proof. The figure provides a proof in the case that α and β are both acute, with $\beta>\alpha$.
Let $\triangle A B C$ be a right triangle with angles α at A and β at B, scaled so that $|B C|=1$.
The perpendicular bisector of $A B$ crosses $A C$ at E (since $\alpha<\beta$). By the SAS theorem, $\angle A B E=\alpha$, so $\angle E B C=\beta-\alpha$. Thus $|E C|=\tan (\beta-\alpha)$ and $|B E|=\sec (\beta-\alpha)$.
Finally, note that $\angle A B E=\angle B A E$, so $\triangle A B E$ is isosceles, and $|A E|=|B E|=\sec (\beta-\alpha)$. Hence

$$
\sec (\beta-\alpha)+\tan (\beta-\alpha)=|A E|+|E C|=|A C|=\tan \beta
$$

Alternate proof.

$$
\begin{aligned}
\tan (\beta-\alpha)+\sec (\beta-\alpha) & =\frac{\tan \beta-\tan \alpha}{1+\tan \beta \tan \alpha}+\frac{\sec \alpha \sec \beta \csc \alpha \csc \beta}{\csc \alpha \csc \beta+\sec \alpha \sec \beta} \\
& =\frac{\tan \beta-\cot \beta}{1+1}+\frac{\sec ^{2} \beta \csc ^{2} \beta}{2 \sec \beta \csc \beta} \\
& =\frac{1}{2}\left[\frac{\sin \beta}{\cos \beta}-\frac{\cos \beta}{\sin \beta}+\frac{1}{\sin \beta \cos \beta}\right] \\
& =\frac{\sin ^{2} \beta-\cos ^{2} \beta+1}{2 \sin \beta \cos \beta} \\
& =\frac{2 \sin ^{2} \beta}{2 \sin \beta \cos \beta} \\
& =\tan \beta .
\end{aligned}
$$

Source: Inspired by Francisco Javier García Capitán, "Proof Without Words: Tangents of 15 and 75 Degrees." College Mathematics Journal 48:1 (January 2017), 35.

