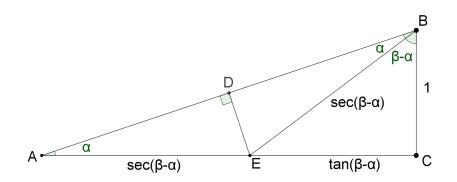


## Problem of the Week #10 (Spring 2017)

Prove: If  $\alpha$  and  $\beta$  are complementary angles, then  $\tan(\beta - \alpha) + \sec(\beta - \alpha) = \tan \beta$ .

## Solution:



*Proof.* The figure provides a proof in the case that  $\alpha$  and  $\beta$  are both acute, with  $\beta > \alpha$ . Let  $\triangle ABC$  be a right triangle with angles  $\alpha$  at A and  $\beta$  at B, scaled so that |BC| = 1. The perpendicular bisector of AB crosses AC at E (since  $\alpha < \beta$ ). By the SAS theorem,  $\angle ABE = \alpha$ , so  $\angle EBC = \beta - \alpha$ . Thus  $|EC| = \tan(\beta - \alpha)$  and  $|BE| = \sec(\beta - \alpha)$ . Finally, note that  $\angle ABE = \angle BAE$ , so  $\triangle ABE$  is isosceles, and  $|AE| = |BE| = \sec(\beta - \alpha)$ . Hence

$$\sec(\beta - \alpha) + \tan(\beta - \alpha) = |AE| + |EC| = |AC| = \tan\beta.$$

Alternate proof.

$$\tan(\beta - \alpha) + \sec(\beta - \alpha) = \frac{\tan\beta - \tan\alpha}{1 + \tan\beta\tan\alpha} + \frac{\sec\alpha\sec\beta\csc\alpha\csc\beta}{\csc\alpha\csc\beta + \sec\alpha\sec\beta}$$
$$= \frac{\tan\beta - \cot\beta}{1 + 1} + \frac{\sec^2\beta\csc^2\beta}{2\sec\beta\csc\beta}$$
$$= \frac{1}{2} \left[ \frac{\sin\beta}{\cos\beta} - \frac{\cos\beta}{\sin\beta} + \frac{1}{\sin\beta\cos\beta} \right]$$
$$= \frac{\sin^2\beta - \cos^2\beta + 1}{2\sin\beta\cos\beta}$$
$$= \frac{2\sin^2\beta}{2\sin\beta\cos\beta}$$
$$= \tan\beta.$$

**Source:** Inspired by Francisco Javier García Capitán, "Proof Without Words: Tangents of 15 and 75 Degrees." *College Mathematics Journal* **48**:1 (January 2017), 35.