Problem of the Week \#6
(Spring 2017)

In how many ways can a rectangle 2 units wide and 8 units high be tiled with Tetris blocks? Extra credit: Let n be an even integer. In how many ways can a rectangle 2 units wide and n units high be tiled with Tetris blocks?

Solution:

There are 25 ways to tile a 2×8 rectangle, and there are $F_{n}{ }^{2}$ ways to tile a $2 \times 2 n$ rectangle, where F_{n} is the $n^{\text {th }}$ Fibonacci number.

Proof. Let $A(n)$ denote the number of ways to arrange n Tetris blocks into a rectangle two units wide.
Let $B(n)$ denote the number of ways to arrange n Tetris blocks into a region two units wide, so that one (specific) column is two units taller than the other.

By counting the ways to fill the top row of a region, we obtain the following recursions:

$$
\left\{\begin{array}{l}
A(n)=A(n-1)+2 B(n-1)+A(n-2) \\
B(n)=A(n-1)+B(n-1)
\end{array}\right.
$$

Let F_{n} denote the $n^{\text {th }}$ Fibonacci number - thus $F_{-1}=0, F_{0}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for any integer $n>0$. We claim that $A(n)=F_{n}{ }^{2}$ and $B(n)=F_{n} F_{n-1}$.
The proof of the claim is by induction on n. The case $n=0$ is clear: $A(0)=1=F_{0}{ }^{2}$ and $B(0)=0=F_{0} F_{-1}$.
Let $k \in \mathbb{N}$, and suppose the claim holds for all $n<k$. Then

$$
A(n)=A(n-1)+2 B(n-1)+A(n-2)={F_{n-1}}^{2}+2 F_{n-1} F_{n-2}+F_{n-2}^{2}=\left(F_{n-1}+F_{n-2}\right)^{2}=F_{n}^{2}
$$

and

$$
B(n)=A(n-1)+B(n-1)=F_{n-1}^{2}+F_{n-1} F_{n-2}=F_{n-1}\left(F_{n-1}+F_{n-2}\right)=F_{n-1} F_{n} .
$$

Specifically, the number of ways to tile a 2×8 rectangle is $A(4)=F_{4}{ }^{2}=5^{2}=25$.
Source: Wright, Bart. "Can You Win at Tetris?" In Riddler Express for 2017-01-27, https: //fivethirtyeight.com/features/can-you-win-at-tetris-can-you-save-a-species/. Solution suggested by Samuel Wirajaya at http://tinyurl.com/TetrisTiling.

