Problem of the Week \#5

(Spring 2017)

Does the equation

$$
a^{2}+b^{7}+c^{13}+d^{14}=e^{15}
$$

have a solution in positive integers a, b, c, d, e ?

Solution:

Yes: one such solution is $(A, B, C, D, E)=\left(4^{637}, 4^{182}, 4^{98}, 4^{91}, 4^{85}\right)$.
Proof.

$$
A^{2}+B^{7}+C^{13}+D^{14}=\left(4^{637}\right)^{2}+\left(4^{182}\right)^{7}+\left(4^{98}\right)^{13}+\left(4^{91}\right)^{14}=4 \cdot 4^{1274}=4^{1275}=\left(4^{85}\right)^{15}=E^{15}
$$

Explanation. We'd like to take the logarithm of both sides of $A^{2}+B^{7}+C^{13}+D^{14}=E^{15}$, but can't simplify the left-hand side. But we're just looking for one solution: let's suppose that all four terms on the left-hand side are equal to N. Then we have $4 N=E^{15}$. This suggests a base-4 $\operatorname{logarithm:~} 1+\log _{4} N=15 \log _{4} E$. It would be ideal if N and E were powers of 4; say $N=4^{K}$ and $E=4^{M}$. Then we need $1+K=15 M$. Ideally, K should be a multiple of 2 , 7,13 , and 14 .
We have $\operatorname{lcm}(2,7,13,14)=13 \cdot 14$, and $\operatorname{gcd}(13 \cdot 14,15)=1$. Thus there exist integers x and y such that $1=(13 \cdot 14) x+15 y$. We can find such a pair by the reverse Euclidean algorithm: one example is

$$
\begin{aligned}
(x, y) & =(-7,85) \\
1 & =(13 \cdot 14)(-7)+(15)(85) \\
13 \cdot 14 \cdot 7+1 & =15 \cdot 85 \\
4 \cdot 4^{13 \cdot 14 \cdot 7} & =4^{15 \cdot 85} \\
4^{13 \cdot 14 \cdot 7}+4^{13 \cdot 14 \cdot 7}+4^{13 \cdot 14 \cdot 7}+4^{13 \cdot 14 \cdot 7} & =4^{15 \cdot 85} \\
\left(4^{13 \cdot 7 \cdot 7}\right)^{2}+\left(4^{13 \cdot 14}\right)^{7}+\left(4^{14 \cdot 7}\right)^{13}+\left(4^{13 \cdot 7}\right)^{14} & =\left(4^{85}\right)^{15} .
\end{aligned}
$$

Source:

Chu, Adrian. "Quickies 1065." Mathematics Magazine 89:5 (December 2016), 379, 385.

