Problem of the Week \#2

(Spring 2017)

Let N be a positive integer. Our job is to pick integers $1=a_{1}<a_{2}<\cdots<a_{10}=N$, satisfying $a_{k} \geq a_{k-1}+k$ for $2 \leq k \leq 10$. In how many different ways can we do this job?

Solution:

There are $\binom{N-47}{8}$ ways to choose $\left(a_{1}, \ldots, a_{10}\right)$.
Proof. Let $1=b_{1}<b_{2}<\cdots<b_{10}=N-45$. For each k, define $\left.a_{k}=b_{k}+(1+\cdots+k-1)\right)$. Then $a_{1}=b_{1}=1$, and $a_{10}=b_{10}+(1+2+\cdots+9)=b_{10}+45=N$. Moreover, given $2 \leq k \leq 10$:

$$
\begin{aligned}
b_{k} & >b_{k-1} \\
b_{k} & \geq b_{k-1}+1 \\
a_{k}-(1+2+\cdots+(k-1)) & \geq a_{k-1}-(1+2+\cdots+(k-2))+1 \\
a_{k}-(k-1) & \geq a_{k-1}+1 \\
a_{k} & \geq a_{k-1}+k
\end{aligned}
$$

Since every step above is reversible, we have exactly one way to do our job for every way of choosing $2 \leq b_{2}<b_{3}<\cdots<b_{9} \leq N-46$, and there are $\binom{N-47}{8}$ ways to do this.

Source: Dan Swenson, Black Hills State University.

