Problem of the Week \#1
(Spring 2017)

Triangle $\triangle A P Q$ is inscribed in the square $A B C D$ as shown in the figure, so that $\angle P A Q=45^{\circ}$ and $\angle A Q B=65^{\circ}$. Find the measure of angle $\angle C P Q$.

Solution:

$\angle C P Q=40^{\circ}$.

Proof. We know $\angle B A Q=25^{\circ}$, so $\angle D A P=20^{\circ}$. Let R_{1} be the reflection of B across $A Q$, and let R_{2} be the reflection of D across $A P$.
I claim that $R_{1}=R_{2}$. Note that $\angle Q A R_{1}+\angle P A R_{2}=25^{\circ}+20^{\circ}=45^{\circ}=\angle P A Q$, so R_{1}, R_{2}, and A are collinear. But $\left|A R_{1}\right|=|A B|=|A D|=\left|A R_{2}\right|$, which proves the claim. Let $R=R_{1}=R_{2}$. Now $\angle P R A+\angle A R Q=90^{\circ}+90^{\circ}=180^{\circ}$, so R lies on $P Q$. It follows that $\angle A P R=\angle A P D=$ 70°, so $\angle C P Q=(180-70-70)^{\circ}=40^{\circ}$.
 $\overrightarrow{P Q}=\left\langle 1-\tan 20^{\circ}, \tan 25^{\circ}-1\right\rangle$. Now let $\theta=\angle C P Q$. We have $\vec{v} \cdot \vec{\imath}=|\vec{\imath} \| \vec{v}| \cos \theta$, so $\theta=\arccos \frac{1-\tan 20^{\circ}}{\sqrt{\left(1-\tan 20^{\circ}\right)^{2}+\left(\tan 25^{\circ}-1\right)^{2}}} \approx 40^{\circ}$.

Source: Park, Poo-Sung. "Quickies 1063." Mathematics Magazine 89:4 (October 2016), pp. 294, 300.

