

PROBLEM OF THE WEEK #1 (Spring 2017)

Triangle $\triangle APQ$ is inscribed in the square ABCD as shown in the figure, so that $\angle PAQ = 45^{\circ}$ and $\angle AQB = 65^{\circ}$. Find the measure of angle $\angle CPQ$.

Solution:

 $\angle CPQ = 40^{\circ}.$

Proof. We know $\angle BAQ = 25^{\circ}$, so $\angle DAP = 20^{\circ}$. Let R_1 be the reflection of B across AQ, and let R_2 be the reflection of D across AP.

I claim that $R_1 = R_2$. Note that $\angle QAR_1 + \angle PAR_2 = 25^\circ + 20^\circ = 45^\circ = \angle PAQ$, so R_1, R_2 , and A are collinear. But $|AR_1| = |AB| = |AD| = |AR_2|$, which proves the claim. Let $R = R_1 = R_2$. Now $\angle PRA + \angle ARQ = 90^\circ + 90^\circ = 180^\circ$, so R lies on PQ. It follows that $\angle APR = \angle APD = 70^\circ$, so $\angle CPQ = (180 - 70 - 70)^\circ = 40^\circ$.

Alternate proof. Suppose |AB| = 1. Then $P = (\tan 20^\circ, 1)$ and $Q = (1, \tan 25^\circ)$. Let $\vec{v} = \overrightarrow{PQ} = \langle 1 - \tan 20^\circ, \tan 25^\circ - 1 \rangle$. Now let $\theta = \angle CPQ$. We have $\vec{v} \cdot \vec{i} = |\vec{i}| |\vec{v}| \cos \theta$, so $\theta = \arccos \frac{1 - \tan 20^\circ}{\sqrt{(1 - \tan 20^\circ)^2 + (\tan 25^\circ - 1)^2}} \approx 40^\circ$.

Source: Park, Poo-Sung. "Quickies 1063." *Mathematics Magazine* 89:4 (October 2016), pp. 294, 300.