Problem of the Week \#9

(Fall 2023)

Which positive integers N have the property that when you delete the third digit of N (in base ten, counting from the left), you get a divisor of N ?

Solution:

Suppose that M is formed by deleting the third digit of N. If N consists of two digits followed by one or more zeros, then $N=10 M$, because then deleting the third digit of N, a zero, is the same as dividing N by 10 , and so M is a divisor of N.
Now suppose that $N=k M$ for some integer k. In base ten, we can write

$$
\begin{align*}
N & =d_{0} \cdot 10^{n}+d_{1} \cdot 10^{n-1}+d_{2} \cdot 10^{n-2}+d_{3} \cdot 10^{n-3}+\cdots+d_{n-1} \cdot 10+d_{n} \tag{1}\\
M & =d_{0} \cdot 10^{n-1}+d_{1} \cdot 10^{n-2}+d_{3} \cdot 10^{n-3}+\cdots+d_{n-1} \cdot 10+d_{n} \\
10 M & =d_{0} \cdot 10^{n}+d_{1} \cdot 10^{n-1}+d_{3} \cdot 10^{n-2}+\cdots+d_{n-2} \cdot 10^{2}+d_{n} \cdot 10 \tag{2}
\end{align*}
$$

We can subtract (1) from (2) to obtain:

$$
\begin{align*}
10 M-N & =\left(d_{3}-d_{2}\right) \cdot 10^{n-2}+\left(d_{4}-d_{3}\right) \cdot 10^{n-3}+\cdots+\left(d_{n}-d_{n-1}\right) \cdot 10-d_{n} \\
(10-k) M & =\left(d_{3}-d_{2}\right) \cdot 10^{n-2}+\left(d_{4}-d_{3}\right) \cdot 10^{n-3}+\cdots+\left(d_{n}-d_{n-1}\right) \cdot 10-d_{n} \tag{3}
\end{align*}
$$

Hence $\frac{10-k}{k} N<10^{n-1}$. If we suppose that $k<10$, though, we find

$$
\frac{10-k}{k} N \geq \frac{1}{k} N>\frac{1}{10} N=d_{0} \cdot 10^{n-1}+d_{1} \cdot 10^{n-2}+d_{2} \cdot 10^{n-3}+d_{3} \cdot 10^{n-4}+\cdots+d_{n-1}+\frac{d_{n}}{10}>10^{n-1}
$$

which contradicts (3).
Likewise, if $k \geq 11$, then $\frac{k-10}{k} N<10^{n-1}$. If $k \geq 12$, this implies $10 k=k+9 k \geq k+108>k+100$, so $10(k-10)>k$, which means $\frac{k-10}{k}>\frac{1}{10}$. Now:

$$
\frac{k-10}{k} N>\frac{1}{10} N=d_{0} \cdot 10^{n-1}+d_{1} \cdot 10^{n-2}+d_{2} \cdot 10^{n-3}+d_{3} \cdot 10^{n-4}+\cdots+d_{n-1}+\frac{d_{n}}{10}>10^{n-1}
$$

which is a contradiction again.
We can't even have $k=11$, or else $M=\frac{N}{11}=\frac{k-10}{k} N<10^{n-1}$, which would mean that M had two fewer digits than N, though we only deleted one digit from N to form M.
Therefore $k=10$, and from (3), we know

$$
0=\left(d_{3}-d_{2}\right) \cdot 10^{n-2}+\left(d_{4}-d_{3}\right) \cdot 10^{n-3}+\cdots+\left(d_{n}-d_{n-1}\right) \cdot 10+\left(0-d_{n}\right),
$$

implying that $d_{2}=d_{3}=d_{4}=\cdots=d_{n}=0$.
Source: D.O. Shklarsky, N.N. Chentzov, and I.M. Yaglom, The USSR Olympiad Problem Book: Selected Problems and Theorems of Elementary Mathematics, Dover Publications (1993), 11, 105-106.

