Problem of the Week \#5
(Fall 2023)

Point B is on segment $\overline{A C}$ with $A B=9$ and $B C=21$. Point D is not on $\overline{A C}$, and $A D=C D$. Assuming that $A D$ and $B D$ are integers, what could be the perimeter of $\triangle A C D$?

Solution:

The possible perimeters of $\triangle A C D$ are 64,96 , and 220 .
Solution. Let P denote the perimeter of $\triangle A C D$: we have $P=30+A D+C D=30+2 \cdot A D$. Construct the altitude $\overline{D E} \perp \overline{A C}$, with length $x>0$. Since $\triangle A D E$ is isosceles, $A E=15=C E$, and $B E=15-9=6$. The Pythagorean theorem, applied to $\triangle A D E$ and $\triangle B D E$, yields:

$$
\begin{aligned}
225 & =A D^{2}-x^{2} \\
\underline{36} & =\underline{B D^{2}-x^{2}} \\
189 & =A D^{2}-B D^{2} \\
189 & =(A D-B D)(A D+B D)
\end{aligned}
$$

Since $0<A D-B D<A D+B D$, we know $A D-B D$ is a positive divisor of $3^{3} \cdot 7=189$ with $1 \leq A D-B D<\sqrt{189}<14$. Therefore $A D-B D$ is in $\{1,3,7,9\}$. Observe that the perimeter of $\triangle A C D$ is $P=30+2 \cdot A D=30+(A D+B D)+(A D-B D)$, and consider all four cases.

- If $A D-B D=1$, then $A D+B D=189$ and $P=30+189+1=220$.
- If $A D-B D=3$, then $A D+B D=63$ and $P=30+63+3=96$.
- If $A D-B D=7$, then $A D+B D=27$ and $P=30+27+7=64$.
- If $A D-B D=9$, then $A D+B D=21$. But that means $A D=15$ and $B D=6$; in other words, $D=E$, and D lies on $A C$, contrary to our initial assumption.

Thus P is either 64,96 , or 220 .

Source: AIME 2003, Problem \#7. In: Scott A. Annin. A Gentle Introduction to the American Invitational Mathematics Exam. MAA Press (2015), 160-161.

