Problem of the Week \#4
(Fall 2023)

In the binomial expansion of $(2+3)^{30}$, which term is the largest?

Solution:

The term $\binom{30}{18} 2^{12} 3^{18}=137,253,877,861,118,054,400$ is largest.
Solution. By the binomial theorem, $(2+3)^{30}=\sum_{k=0}^{30}\binom{30}{k} 2^{30-k} 3^{k}$.
Suppose the largest term in this sum occurs when $k=r$. Then the $r^{\text {th }}$ term is greater than or equal to the term on either side of it:

$$
\begin{aligned}
\binom{30}{r} 2^{30-r} 3^{r} & \geq\binom{ 30}{r-1} 2^{31-r} 3^{r-1}, & \binom{30}{r} 2^{30-r} 3^{r} & \geq\binom{ 30}{r+1} 2^{29-r} 3^{r+1} \\
\frac{30!}{r!(30-r)!} 2^{30-r} 3^{r} & \geq \frac{30!}{(r-1)!(31-r)!} 2^{31-r} 3^{r-1}, & \frac{30!}{r!(30-r)!} 2^{30-r} 3^{r} & \geq \frac{30!}{(r+1)!(29-r)!} 2^{29-r} 3^{r+1} \\
\frac{3}{r} & \geq \frac{2}{31-r}, & \frac{2}{30-r} & \geq \frac{3}{r+1} \\
93-3 r & \geq 2 r, & 2 r+2 & \geq 90-3 r \\
93 & \geq 5 r, & 5 r & \geq 88 .
\end{aligned}
$$

Since $5 r$ is a multiple of 5 between 88 and $93,5 r=90$ and $r=18$.

Source: Charles F. Pinzka, "Problem solving and some problems." In: National Council of Teachers of Mathematics, Enrichment Mathematics for High School: Twenty-Eighth Yearbook (1963), pp. 178-183.

